Matches in SemOpenAlex for { <https://semopenalex.org/work/W2933967224> ?p ?o ?g. }
- W2933967224 abstract "We present ChromAlignNet, a deep learning model for alignment of peaks in Gas Chromatogram-Mass Spectrometry (GC-MS) data. GC-MS is regarded as a gold standard in analysis of chemical composition in samples. However, due to the complexity of the instrument, a substance's retention time (RT) may not stay fixed across multiple GC-MS chromatograms. To use GC-MS data for biomarker discovery requires alignment of identical analyte's RT from different samples. Current methods of alignment are all based on a set of formal, mathematical rules, consequently, they are unable to handle the complexity of GC-MS data from human breath. We present a solution to GC-MS alignment using deep learning neural networks, which are more adept at complex, fuzzy data sets. We tested our model on several GC-MS data sets of various complexities and show the model has very good true position rates (up to 99% for easy data sets and up to 92% for very complex data sets). We compared our model with the popular correlation optimized warping (COW) and show our model has much better overall performance. This method can easily be adapted to other similar data such as those from liquid chromatography." @default.
- W2933967224 created "2019-04-11" @default.
- W2933967224 creator A5073914427 @default.
- W2933967224 creator A5075064847 @default.
- W2933967224 date "2019-04-02" @default.
- W2933967224 modified "2023-09-27" @default.
- W2933967224 title "Peak Alignment of GC-MS Data with Deep Learning." @default.
- W2933967224 cites W116183427 @default.
- W2933967224 cites W1498436455 @default.
- W2933967224 cites W1686810756 @default.
- W2933967224 cites W169539560 @default.
- W2933967224 cites W1924770834 @default.
- W2933967224 cites W1997653170 @default.
- W2933967224 cites W1999517677 @default.
- W2933967224 cites W2015861736 @default.
- W2933967224 cites W2016534561 @default.
- W2933967224 cites W2056130843 @default.
- W2933967224 cites W2064675550 @default.
- W2933967224 cites W2074325744 @default.
- W2933967224 cites W2078763118 @default.
- W2933967224 cites W2095705004 @default.
- W2933967224 cites W2097117768 @default.
- W2933967224 cites W2113222161 @default.
- W2933967224 cites W2120432001 @default.
- W2933967224 cites W2120858595 @default.
- W2933967224 cites W2156405617 @default.
- W2933967224 cites W2157364932 @default.
- W2933967224 cites W2160815625 @default.
- W2933967224 cites W2470233764 @default.
- W2933967224 cites W2508865106 @default.
- W2933967224 cites W2587019100 @default.
- W2933967224 cites W2589267742 @default.
- W2933967224 cites W2616465717 @default.
- W2933967224 cites W2741097030 @default.
- W2933967224 cites W2784570262 @default.
- W2933967224 cites W2792764867 @default.
- W2933967224 cites W2888471901 @default.
- W2933967224 cites W2888787028 @default.
- W2933967224 cites W2902323525 @default.
- W2933967224 cites W2919115771 @default.
- W2933967224 hasPublicationYear "2019" @default.
- W2933967224 type Work @default.
- W2933967224 sameAs 2933967224 @default.
- W2933967224 citedByCount "0" @default.
- W2933967224 crossrefType "posted-content" @default.
- W2933967224 hasAuthorship W2933967224A5073914427 @default.
- W2933967224 hasAuthorship W2933967224A5075064847 @default.
- W2933967224 hasConcept C10390740 @default.
- W2933967224 hasConcept C108583219 @default.
- W2933967224 hasConcept C124101348 @default.
- W2933967224 hasConcept C153180895 @default.
- W2933967224 hasConcept C154945302 @default.
- W2933967224 hasConcept C157202957 @default.
- W2933967224 hasConcept C162356407 @default.
- W2933967224 hasConcept C177264268 @default.
- W2933967224 hasConcept C185592680 @default.
- W2933967224 hasConcept C199360897 @default.
- W2933967224 hasConcept C205345274 @default.
- W2933967224 hasConcept C41008148 @default.
- W2933967224 hasConcept C43617362 @default.
- W2933967224 hasConcept C50644808 @default.
- W2933967224 hasConcept C58489278 @default.
- W2933967224 hasConceptScore W2933967224C10390740 @default.
- W2933967224 hasConceptScore W2933967224C108583219 @default.
- W2933967224 hasConceptScore W2933967224C124101348 @default.
- W2933967224 hasConceptScore W2933967224C153180895 @default.
- W2933967224 hasConceptScore W2933967224C154945302 @default.
- W2933967224 hasConceptScore W2933967224C157202957 @default.
- W2933967224 hasConceptScore W2933967224C162356407 @default.
- W2933967224 hasConceptScore W2933967224C177264268 @default.
- W2933967224 hasConceptScore W2933967224C185592680 @default.
- W2933967224 hasConceptScore W2933967224C199360897 @default.
- W2933967224 hasConceptScore W2933967224C205345274 @default.
- W2933967224 hasConceptScore W2933967224C41008148 @default.
- W2933967224 hasConceptScore W2933967224C43617362 @default.
- W2933967224 hasConceptScore W2933967224C50644808 @default.
- W2933967224 hasConceptScore W2933967224C58489278 @default.
- W2933967224 hasLocation W29339672241 @default.
- W2933967224 hasOpenAccess W2933967224 @default.
- W2933967224 hasPrimaryLocation W29339672241 @default.
- W2933967224 hasRelatedWork W1615610376 @default.
- W2933967224 hasRelatedWork W1717040405 @default.
- W2933967224 hasRelatedWork W175813744 @default.
- W2933967224 hasRelatedWork W1980187107 @default.
- W2933967224 hasRelatedWork W2037212872 @default.
- W2933967224 hasRelatedWork W2067736068 @default.
- W2933967224 hasRelatedWork W2130126659 @default.
- W2933967224 hasRelatedWork W2136692859 @default.
- W2933967224 hasRelatedWork W2143947757 @default.
- W2933967224 hasRelatedWork W2313125168 @default.
- W2933967224 hasRelatedWork W2431113052 @default.
- W2933967224 hasRelatedWork W2952844973 @default.
- W2933967224 hasRelatedWork W2969887043 @default.
- W2933967224 hasRelatedWork W3001821743 @default.
- W2933967224 hasRelatedWork W3006054343 @default.
- W2933967224 hasRelatedWork W3006885297 @default.
- W2933967224 hasRelatedWork W3058514020 @default.
- W2933967224 hasRelatedWork W3201949741 @default.
- W2933967224 hasRelatedWork W3210686069 @default.
- W2933967224 hasRelatedWork W2871604389 @default.