Matches in SemOpenAlex for { <https://semopenalex.org/work/W2933974480> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2933974480 endingPage "185" @default.
- W2933974480 startingPage "173" @default.
- W2933974480 abstract "Three-dimensional ground penetrating radar data are often ambiguous and complex to interpret when attempting to detect only underground cavities because ground penetrating radar reflections from various underground objects can appear like those from cavities. In this study, we tackle the issue of ambiguity by proposing a system based on deep convolutional neural networks, which is capable of autonomous underground cavity detection beneath urban roads using three-dimensional ground penetrating radar data. First, a basis pursuit-based background filtering algorithm is developed to enhance the visibility of underground objects. The deep convolutional neural network is then established and applied to automatically classify underground objects using the filtered three-dimensional ground penetrating radar data as represented by three types of images: A-, B-, and C-scans. In this study, we utilize a novel two-dimensional grid image consisting of several B- and C-scan images. Cavity, pipe, manhole, and intact features extracted from in situ three-dimensional ground penetrating radar data are used to train the convolutional neural network. The proposed technique is experimentally validated using real three-dimensional ground penetrating radar data obtained from urban roads in Seoul, South Korea." @default.
- W2933974480 created "2019-04-11" @default.
- W2933974480 creator A5007038400 @default.
- W2933974480 creator A5050704650 @default.
- W2933974480 creator A5067531006 @default.
- W2933974480 date "2019-03-29" @default.
- W2933974480 modified "2023-10-14" @default.
- W2933974480 title "Deep learning-based automated underground cavity detection using three-dimensional ground penetrating radar" @default.
- W2933974480 cites W1964118780 @default.
- W2933974480 cites W1976685767 @default.
- W2933974480 cites W2012034308 @default.
- W2933974480 cites W2050651064 @default.
- W2933974480 cites W2054046647 @default.
- W2933974480 cites W2071861659 @default.
- W2933974480 cites W2117482628 @default.
- W2933974480 cites W2123665156 @default.
- W2933974480 cites W2130976145 @default.
- W2933974480 cites W2136235822 @default.
- W2933974480 cites W2169534075 @default.
- W2933974480 cites W2324426351 @default.
- W2933974480 cites W2332560544 @default.
- W2933974480 cites W2345304534 @default.
- W2933974480 cites W2395626468 @default.
- W2933974480 cites W2891220496 @default.
- W2933974480 doi "https://doi.org/10.1177/1475921719838081" @default.
- W2933974480 hasPublicationYear "2019" @default.
- W2933974480 type Work @default.
- W2933974480 sameAs 2933974480 @default.
- W2933974480 citedByCount "37" @default.
- W2933974480 countsByYear W29339744802019 @default.
- W2933974480 countsByYear W29339744802020 @default.
- W2933974480 countsByYear W29339744802021 @default.
- W2933974480 countsByYear W29339744802022 @default.
- W2933974480 countsByYear W29339744802023 @default.
- W2933974480 crossrefType "journal-article" @default.
- W2933974480 hasAuthorship W2933974480A5007038400 @default.
- W2933974480 hasAuthorship W2933974480A5050704650 @default.
- W2933974480 hasAuthorship W2933974480A5067531006 @default.
- W2933974480 hasConcept C108583219 @default.
- W2933974480 hasConcept C10929652 @default.
- W2933974480 hasConcept C123403432 @default.
- W2933974480 hasConcept C127313418 @default.
- W2933974480 hasConcept C153294291 @default.
- W2933974480 hasConcept C154945302 @default.
- W2933974480 hasConcept C199360897 @default.
- W2933974480 hasConcept C205649164 @default.
- W2933974480 hasConcept C2780522230 @default.
- W2933974480 hasConcept C31972630 @default.
- W2933974480 hasConcept C41008148 @default.
- W2933974480 hasConcept C554190296 @default.
- W2933974480 hasConcept C62649853 @default.
- W2933974480 hasConcept C71813955 @default.
- W2933974480 hasConcept C76155785 @default.
- W2933974480 hasConcept C81363708 @default.
- W2933974480 hasConceptScore W2933974480C108583219 @default.
- W2933974480 hasConceptScore W2933974480C10929652 @default.
- W2933974480 hasConceptScore W2933974480C123403432 @default.
- W2933974480 hasConceptScore W2933974480C127313418 @default.
- W2933974480 hasConceptScore W2933974480C153294291 @default.
- W2933974480 hasConceptScore W2933974480C154945302 @default.
- W2933974480 hasConceptScore W2933974480C199360897 @default.
- W2933974480 hasConceptScore W2933974480C205649164 @default.
- W2933974480 hasConceptScore W2933974480C2780522230 @default.
- W2933974480 hasConceptScore W2933974480C31972630 @default.
- W2933974480 hasConceptScore W2933974480C41008148 @default.
- W2933974480 hasConceptScore W2933974480C554190296 @default.
- W2933974480 hasConceptScore W2933974480C62649853 @default.
- W2933974480 hasConceptScore W2933974480C71813955 @default.
- W2933974480 hasConceptScore W2933974480C76155785 @default.
- W2933974480 hasConceptScore W2933974480C81363708 @default.
- W2933974480 hasIssue "1" @default.
- W2933974480 hasLocation W29339744801 @default.
- W2933974480 hasOpenAccess W2933974480 @default.
- W2933974480 hasPrimaryLocation W29339744801 @default.
- W2933974480 hasRelatedWork W2080958151 @default.
- W2933974480 hasRelatedWork W2356754952 @default.
- W2933974480 hasRelatedWork W2366839571 @default.
- W2933974480 hasRelatedWork W2374146176 @default.
- W2933974480 hasRelatedWork W2620680451 @default.
- W2933974480 hasRelatedWork W2946057701 @default.
- W2933974480 hasRelatedWork W4223960160 @default.
- W2933974480 hasRelatedWork W4315471419 @default.
- W2933974480 hasRelatedWork W4386931161 @default.
- W2933974480 hasRelatedWork W3090858966 @default.
- W2933974480 hasVolume "19" @default.
- W2933974480 isParatext "false" @default.
- W2933974480 isRetracted "false" @default.
- W2933974480 magId "2933974480" @default.
- W2933974480 workType "article" @default.