Matches in SemOpenAlex for { <https://semopenalex.org/work/W2934193092> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2934193092 endingPage "2507" @default.
- W2934193092 startingPage "2501" @default.
- W2934193092 abstract "Nowadays, the use of deep learning for the calibration of soft wearable sensors has addressed the typical drawbacks of the microfluidic soft sensors, such as hysteresis and nonlinearity. However, previous studies have not yet resolved some of the design constraints such as the sensors are needed to be attached to the joints and many sensors are needed to track the human motion. Moreover, the previous methods also demand an excessive amount of data for sensor calibration which make the system impractical. In this letter, we present a gait motion generating method using only two microfluidic sensors. We select appropriate sensor positions with consideration of the deformation patterns of the lower-limb skins and mutual interference with soft actuators. Moreover, a semi-supervised deep learning model is proposed to reduce the size of calibration data. We evaluated the performance of the proposed model with various walking speeds. From the experiment, the proposed method showed a higher performance with smaller calibration dataset comparing to the other methods that are based on the supervised deep learning." @default.
- W2934193092 created "2019-04-11" @default.
- W2934193092 creator A5015332050 @default.
- W2934193092 creator A5019841088 @default.
- W2934193092 creator A5029363735 @default.
- W2934193092 creator A5040569943 @default.
- W2934193092 creator A5069806326 @default.
- W2934193092 date "2019-07-01" @default.
- W2934193092 modified "2023-10-14" @default.
- W2934193092 title "Semi-Supervised Gait Generation With Two Microfluidic Soft Sensors" @default.
- W2934193092 cites W1523513542 @default.
- W2934193092 cites W2022443189 @default.
- W2934193092 cites W2055548088 @default.
- W2934193092 cites W2061206949 @default.
- W2934193092 cites W2064675550 @default.
- W2934193092 cites W2073442815 @default.
- W2934193092 cites W2083582064 @default.
- W2934193092 cites W2138153039 @default.
- W2934193092 cites W2144930761 @default.
- W2934193092 cites W2151386142 @default.
- W2934193092 cites W2157331557 @default.
- W2934193092 cites W2417034203 @default.
- W2934193092 cites W2591391366 @default.
- W2934193092 cites W2626605998 @default.
- W2934193092 cites W2753562637 @default.
- W2934193092 cites W2784238521 @default.
- W2934193092 cites W2890923088 @default.
- W2934193092 cites W2896988665 @default.
- W2934193092 cites W2913036154 @default.
- W2934193092 doi "https://doi.org/10.1109/lra.2019.2907431" @default.
- W2934193092 hasPublicationYear "2019" @default.
- W2934193092 type Work @default.
- W2934193092 sameAs 2934193092 @default.
- W2934193092 citedByCount "19" @default.
- W2934193092 countsByYear W29341930922020 @default.
- W2934193092 countsByYear W29341930922021 @default.
- W2934193092 countsByYear W29341930922022 @default.
- W2934193092 countsByYear W29341930922023 @default.
- W2934193092 crossrefType "journal-article" @default.
- W2934193092 hasAuthorship W2934193092A5015332050 @default.
- W2934193092 hasAuthorship W2934193092A5019841088 @default.
- W2934193092 hasAuthorship W2934193092A5029363735 @default.
- W2934193092 hasAuthorship W2934193092A5040569943 @default.
- W2934193092 hasAuthorship W2934193092A5069806326 @default.
- W2934193092 hasConcept C105795698 @default.
- W2934193092 hasConcept C127162648 @default.
- W2934193092 hasConcept C149635348 @default.
- W2934193092 hasConcept C150594956 @default.
- W2934193092 hasConcept C151800584 @default.
- W2934193092 hasConcept C154945302 @default.
- W2934193092 hasConcept C165838908 @default.
- W2934193092 hasConcept C31258907 @default.
- W2934193092 hasConcept C31972630 @default.
- W2934193092 hasConcept C32022120 @default.
- W2934193092 hasConcept C33923547 @default.
- W2934193092 hasConcept C41008148 @default.
- W2934193092 hasConcept C42407357 @default.
- W2934193092 hasConcept C44154836 @default.
- W2934193092 hasConcept C86803240 @default.
- W2934193092 hasConceptScore W2934193092C105795698 @default.
- W2934193092 hasConceptScore W2934193092C127162648 @default.
- W2934193092 hasConceptScore W2934193092C149635348 @default.
- W2934193092 hasConceptScore W2934193092C150594956 @default.
- W2934193092 hasConceptScore W2934193092C151800584 @default.
- W2934193092 hasConceptScore W2934193092C154945302 @default.
- W2934193092 hasConceptScore W2934193092C165838908 @default.
- W2934193092 hasConceptScore W2934193092C31258907 @default.
- W2934193092 hasConceptScore W2934193092C31972630 @default.
- W2934193092 hasConceptScore W2934193092C32022120 @default.
- W2934193092 hasConceptScore W2934193092C33923547 @default.
- W2934193092 hasConceptScore W2934193092C41008148 @default.
- W2934193092 hasConceptScore W2934193092C42407357 @default.
- W2934193092 hasConceptScore W2934193092C44154836 @default.
- W2934193092 hasConceptScore W2934193092C86803240 @default.
- W2934193092 hasIssue "3" @default.
- W2934193092 hasLocation W29341930921 @default.
- W2934193092 hasOpenAccess W2934193092 @default.
- W2934193092 hasPrimaryLocation W29341930921 @default.
- W2934193092 hasRelatedWork W2006668579 @default.
- W2934193092 hasRelatedWork W2037124552 @default.
- W2934193092 hasRelatedWork W2294565841 @default.
- W2934193092 hasRelatedWork W2513792068 @default.
- W2934193092 hasRelatedWork W2560124335 @default.
- W2934193092 hasRelatedWork W2603734352 @default.
- W2934193092 hasRelatedWork W3204276839 @default.
- W2934193092 hasRelatedWork W4255563580 @default.
- W2934193092 hasRelatedWork W4293469093 @default.
- W2934193092 hasRelatedWork W4366731957 @default.
- W2934193092 hasVolume "4" @default.
- W2934193092 isParatext "false" @default.
- W2934193092 isRetracted "false" @default.
- W2934193092 magId "2934193092" @default.
- W2934193092 workType "article" @default.