Matches in SemOpenAlex for { <https://semopenalex.org/work/W2934238135> ?p ?o ?g. }
- W2934238135 endingPage "49" @default.
- W2934238135 startingPage "43" @default.
- W2934238135 abstract "Automated surveillance for cardiac arrests would be useful in overcrowded emergency departments. The purpose of this study is to develop and test artificial neural network (ANN) classifiers for early detection of patients at risk of cardiac arrest in emergency departments. This is a single-center electronic health record (EHR)-based study. The primary outcome was the development of cardiac arrest within 24 h after prediction. Three ANN models were trained: multilayer perceptron (MLP), long-short-term memory (LSTM), and hybrid. These were compared to other classifiers including the modified early warning score (MEWS), logistic regression, and random forest. We used AUROC, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the comparison. During the study period, there were a total of 374,605 ED visits and 2,910,321 patient status updates. The ANN models (MLP, LSTM, and hybrid) achieved higher AUROC (AUROC: 0.929, 0.933, and 0.936; 95% confidential interval: 0.926–0.932, 0.930–0.936, and 0.933–0.939, respectively) compared to the non-ANN models, and the hybrid model exhibited the best performance. The ANN classifiers displayed higher performance in most of the test characteristics when the threshold levels of the classifiers were fixed to display the same positive result as those at the three MEWS thresholds (score ≥ 3, ≥4, and ≥5), and when compared with each other. The ANN improves upon MEWS and conventional machine learning algorithms for the prediction of cardiac arrests in emergency departments. The hybrid ANN model utilizing both baseline and sequence information achieved the best performance." @default.
- W2934238135 created "2019-04-11" @default.
- W2934238135 creator A5004023809 @default.
- W2934238135 creator A5006716595 @default.
- W2934238135 creator A5016844435 @default.
- W2934238135 creator A5029465477 @default.
- W2934238135 creator A5037476021 @default.
- W2934238135 creator A5042775709 @default.
- W2934238135 creator A5060713534 @default.
- W2934238135 creator A5062433498 @default.
- W2934238135 creator A5064069488 @default.
- W2934238135 creator A5073284312 @default.
- W2934238135 date "2020-01-01" @default.
- W2934238135 modified "2023-10-02" @default.
- W2934238135 title "Developing neural network models for early detection of cardiac arrest in emergency department" @default.
- W2934238135 cites W1807259383 @default.
- W2934238135 cites W2064675550 @default.
- W2934238135 cites W2068227175 @default.
- W2934238135 cites W2085657320 @default.
- W2934238135 cites W2117583933 @default.
- W2934238135 cites W2148254543 @default.
- W2934238135 cites W2155116952 @default.
- W2934238135 cites W2161371877 @default.
- W2934238135 cites W2167744468 @default.
- W2934238135 cites W2169167455 @default.
- W2934238135 cites W2323525554 @default.
- W2934238135 cites W2333727219 @default.
- W2934238135 cites W2754464353 @default.
- W2934238135 cites W2763137864 @default.
- W2934238135 cites W2766207659 @default.
- W2934238135 cites W3098949126 @default.
- W2934238135 doi "https://doi.org/10.1016/j.ajem.2019.04.006" @default.
- W2934238135 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30982559" @default.
- W2934238135 hasPublicationYear "2020" @default.
- W2934238135 type Work @default.
- W2934238135 sameAs 2934238135 @default.
- W2934238135 citedByCount "36" @default.
- W2934238135 countsByYear W29342381352020 @default.
- W2934238135 countsByYear W29342381352021 @default.
- W2934238135 countsByYear W29342381352022 @default.
- W2934238135 countsByYear W29342381352023 @default.
- W2934238135 crossrefType "journal-article" @default.
- W2934238135 hasAuthorship W2934238135A5004023809 @default.
- W2934238135 hasAuthorship W2934238135A5006716595 @default.
- W2934238135 hasAuthorship W2934238135A5016844435 @default.
- W2934238135 hasAuthorship W2934238135A5029465477 @default.
- W2934238135 hasAuthorship W2934238135A5037476021 @default.
- W2934238135 hasAuthorship W2934238135A5042775709 @default.
- W2934238135 hasAuthorship W2934238135A5060713534 @default.
- W2934238135 hasAuthorship W2934238135A5062433498 @default.
- W2934238135 hasAuthorship W2934238135A5064069488 @default.
- W2934238135 hasAuthorship W2934238135A5073284312 @default.
- W2934238135 hasConcept C118552586 @default.
- W2934238135 hasConcept C119857082 @default.
- W2934238135 hasConcept C126322002 @default.
- W2934238135 hasConcept C151956035 @default.
- W2934238135 hasConcept C154945302 @default.
- W2934238135 hasConcept C169258074 @default.
- W2934238135 hasConcept C179717631 @default.
- W2934238135 hasConcept C194828623 @default.
- W2934238135 hasConcept C2777671062 @default.
- W2934238135 hasConcept C2778358025 @default.
- W2934238135 hasConcept C2780724011 @default.
- W2934238135 hasConcept C41008148 @default.
- W2934238135 hasConcept C50644808 @default.
- W2934238135 hasConcept C58471807 @default.
- W2934238135 hasConcept C71924100 @default.
- W2934238135 hasConceptScore W2934238135C118552586 @default.
- W2934238135 hasConceptScore W2934238135C119857082 @default.
- W2934238135 hasConceptScore W2934238135C126322002 @default.
- W2934238135 hasConceptScore W2934238135C151956035 @default.
- W2934238135 hasConceptScore W2934238135C154945302 @default.
- W2934238135 hasConceptScore W2934238135C169258074 @default.
- W2934238135 hasConceptScore W2934238135C179717631 @default.
- W2934238135 hasConceptScore W2934238135C194828623 @default.
- W2934238135 hasConceptScore W2934238135C2777671062 @default.
- W2934238135 hasConceptScore W2934238135C2778358025 @default.
- W2934238135 hasConceptScore W2934238135C2780724011 @default.
- W2934238135 hasConceptScore W2934238135C41008148 @default.
- W2934238135 hasConceptScore W2934238135C50644808 @default.
- W2934238135 hasConceptScore W2934238135C58471807 @default.
- W2934238135 hasConceptScore W2934238135C71924100 @default.
- W2934238135 hasFunder F4320321292 @default.
- W2934238135 hasIssue "1" @default.
- W2934238135 hasLocation W29342381351 @default.
- W2934238135 hasLocation W29342381352 @default.
- W2934238135 hasOpenAccess W2934238135 @default.
- W2934238135 hasPrimaryLocation W29342381351 @default.
- W2934238135 hasRelatedWork W2299888771 @default.
- W2934238135 hasRelatedWork W2889977446 @default.
- W2934238135 hasRelatedWork W2912136334 @default.
- W2934238135 hasRelatedWork W2952047734 @default.
- W2934238135 hasRelatedWork W2980180104 @default.
- W2934238135 hasRelatedWork W3029542871 @default.
- W2934238135 hasRelatedWork W3029555405 @default.
- W2934238135 hasRelatedWork W3084338058 @default.
- W2934238135 hasRelatedWork W3125074861 @default.
- W2934238135 hasRelatedWork W4313423986 @default.