Matches in SemOpenAlex for { <https://semopenalex.org/work/W2934607510> ?p ?o ?g. }
- W2934607510 endingPage "1781" @default.
- W2934607510 startingPage "1766" @default.
- W2934607510 abstract "To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning." @default.
- W2934607510 created "2019-04-11" @default.
- W2934607510 creator A5003545697 @default.
- W2934607510 creator A5012738417 @default.
- W2934607510 creator A5040751549 @default.
- W2934607510 creator A5062213333 @default.
- W2934607510 creator A5077470909 @default.
- W2934607510 creator A5086949882 @default.
- W2934607510 creator A5089162964 @default.
- W2934607510 date "2019-04-02" @default.
- W2934607510 modified "2023-10-12" @default.
- W2934607510 title "Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis" @default.
- W2934607510 cites W1493233065 @default.
- W2934607510 cites W1500693574 @default.
- W2934607510 cites W1505960890 @default.
- W2934607510 cites W1968912090 @default.
- W2934607510 cites W1979290264 @default.
- W2934607510 cites W1988147352 @default.
- W2934607510 cites W1988290440 @default.
- W2934607510 cites W1990474689 @default.
- W2934607510 cites W1993906635 @default.
- W2934607510 cites W1998092191 @default.
- W2934607510 cites W2004393880 @default.
- W2934607510 cites W2011554523 @default.
- W2934607510 cites W2040403711 @default.
- W2934607510 cites W2049833004 @default.
- W2934607510 cites W2057850395 @default.
- W2934607510 cites W2066419542 @default.
- W2934607510 cites W2073686429 @default.
- W2934607510 cites W2076219102 @default.
- W2934607510 cites W2096946369 @default.
- W2934607510 cites W2102222275 @default.
- W2934607510 cites W2122305905 @default.
- W2934607510 cites W2131100936 @default.
- W2934607510 cites W2155885672 @default.
- W2934607510 cites W2159539107 @default.
- W2934607510 cites W2263408052 @default.
- W2934607510 cites W2295957387 @default.
- W2934607510 cites W2296760094 @default.
- W2934607510 cites W2309222574 @default.
- W2934607510 cites W2329798770 @default.
- W2934607510 cites W2340766773 @default.
- W2934607510 cites W2404506086 @default.
- W2934607510 cites W2507175502 @default.
- W2934607510 cites W2511550199 @default.
- W2934607510 cites W2529178477 @default.
- W2934607510 cites W2604652163 @default.
- W2934607510 cites W2609726574 @default.
- W2934607510 cites W2803876882 @default.
- W2934607510 cites W3123679541 @default.
- W2934607510 cites W4251265136 @default.
- W2934607510 doi "https://doi.org/10.3758/s13428-019-01202-8" @default.
- W2934607510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30941697" @default.
- W2934607510 hasPublicationYear "2019" @default.
- W2934607510 type Work @default.
- W2934607510 sameAs 2934607510 @default.
- W2934607510 citedByCount "45" @default.
- W2934607510 countsByYear W29346075102019 @default.
- W2934607510 countsByYear W29346075102020 @default.
- W2934607510 countsByYear W29346075102021 @default.
- W2934607510 countsByYear W29346075102022 @default.
- W2934607510 countsByYear W29346075102023 @default.
- W2934607510 crossrefType "journal-article" @default.
- W2934607510 hasAuthorship W2934607510A5003545697 @default.
- W2934607510 hasAuthorship W2934607510A5012738417 @default.
- W2934607510 hasAuthorship W2934607510A5040751549 @default.
- W2934607510 hasAuthorship W2934607510A5062213333 @default.
- W2934607510 hasAuthorship W2934607510A5077470909 @default.
- W2934607510 hasAuthorship W2934607510A5086949882 @default.
- W2934607510 hasAuthorship W2934607510A5089162964 @default.
- W2934607510 hasBestOaLocation W29346075101 @default.
- W2934607510 hasConcept C111919701 @default.
- W2934607510 hasConcept C119857082 @default.
- W2934607510 hasConcept C136764020 @default.
- W2934607510 hasConcept C144024400 @default.
- W2934607510 hasConcept C151730666 @default.
- W2934607510 hasConcept C15744967 @default.
- W2934607510 hasConcept C177264268 @default.
- W2934607510 hasConcept C190248442 @default.
- W2934607510 hasConcept C199360897 @default.
- W2934607510 hasConcept C23123220 @default.
- W2934607510 hasConcept C2522767166 @default.
- W2934607510 hasConcept C2779343474 @default.
- W2934607510 hasConcept C2780876879 @default.
- W2934607510 hasConcept C36289849 @default.
- W2934607510 hasConcept C41008148 @default.
- W2934607510 hasConcept C518677369 @default.
- W2934607510 hasConcept C542102704 @default.
- W2934607510 hasConcept C74196892 @default.
- W2934607510 hasConcept C86803240 @default.
- W2934607510 hasConcept C87156501 @default.
- W2934607510 hasConcept C98045186 @default.
- W2934607510 hasConceptScore W2934607510C111919701 @default.
- W2934607510 hasConceptScore W2934607510C119857082 @default.
- W2934607510 hasConceptScore W2934607510C136764020 @default.
- W2934607510 hasConceptScore W2934607510C144024400 @default.
- W2934607510 hasConceptScore W2934607510C151730666 @default.
- W2934607510 hasConceptScore W2934607510C15744967 @default.