Matches in SemOpenAlex for { <https://semopenalex.org/work/W2934678466> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2934678466 endingPage "e000891" @default.
- W2934678466 startingPage "e000891" @default.
- W2934678466 abstract "Background The development of standardised methods for ultrasound (US) scanning and evaluation of synovitis activity by the OMERACT-EULAR Synovitis Scoring (OESS) system is a major step forward in the use of US in the diagnosis and monitoring of patients with inflammatory arthritis. The variation in interpretation of disease activity on US images can affect diagnosis, treatment and outcomes in clinical trials. We, therefore, set out to investigate if we could utilise neural network architecture for the interpretation of disease activity on Doppler US images, using the OESS scoring system. Methods Two state-of-the-art neural networks were used to extract information from 1342 Doppler US images from patients with rheumatoid arthritis (RA). One neural network divided images as either healthy (Doppler OESS score 0 or 1) or diseased (Doppler OESS score 2 or 3). The other to score images across all four of the OESS systems Doppler US scores (0–3). The neural networks were hereafter tested on a new set of RA Doppler US images (n=176). Agreement between rheumatologist’s scores and network scores was measured with the kappa statistic. Results For the neural network assessing healthy/diseased score, the highest accuracies compared with an expert rheumatologist were 86.4% and 86.9% with a sensitivity of 0.864 and 0.875 and specificity of 0.864 and 0.864, respectively. The other neural network developed to four class Doppler OESS scoring achieved an average per class accuracy of 75.0% and a quadratically weighted kappa score of 0.84. Conclusion This study is the first to show that neural network technology can be used in the scoring of disease activity on Doppler US images according to the OESS system." @default.
- W2934678466 created "2019-04-11" @default.
- W2934678466 creator A5015249430 @default.
- W2934678466 creator A5024861911 @default.
- W2934678466 creator A5025095431 @default.
- W2934678466 creator A5032121124 @default.
- W2934678466 creator A5066567815 @default.
- W2934678466 creator A5069935355 @default.
- W2934678466 creator A5070645327 @default.
- W2934678466 date "2019-03-01" @default.
- W2934678466 modified "2023-10-16" @default.
- W2934678466 title "Neural networks for automatic scoring of arthritis disease activity on ultrasound images" @default.
- W2934678466 cites W1985598489 @default.
- W2934678466 cites W2092310800 @default.
- W2934678466 cites W2112145151 @default.
- W2934678466 cites W2117539524 @default.
- W2934678466 cites W2127445886 @default.
- W2934678466 cites W2158743062 @default.
- W2934678466 cites W2623617647 @default.
- W2934678466 cites W2735440974 @default.
- W2934678466 cites W2735983207 @default.
- W2934678466 cites W2762686576 @default.
- W2934678466 cites W2809118363 @default.
- W2934678466 cites W2919115771 @default.
- W2934678466 doi "https://doi.org/10.1136/rmdopen-2018-000891" @default.
- W2934678466 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6443126" @default.
- W2934678466 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30997154" @default.
- W2934678466 hasPublicationYear "2019" @default.
- W2934678466 type Work @default.
- W2934678466 sameAs 2934678466 @default.
- W2934678466 citedByCount "41" @default.
- W2934678466 countsByYear W29346784662019 @default.
- W2934678466 countsByYear W29346784662020 @default.
- W2934678466 countsByYear W29346784662021 @default.
- W2934678466 countsByYear W29346784662022 @default.
- W2934678466 countsByYear W29346784662023 @default.
- W2934678466 crossrefType "journal-article" @default.
- W2934678466 hasAuthorship W2934678466A5015249430 @default.
- W2934678466 hasAuthorship W2934678466A5024861911 @default.
- W2934678466 hasAuthorship W2934678466A5025095431 @default.
- W2934678466 hasAuthorship W2934678466A5032121124 @default.
- W2934678466 hasAuthorship W2934678466A5066567815 @default.
- W2934678466 hasAuthorship W2934678466A5069935355 @default.
- W2934678466 hasAuthorship W2934678466A5070645327 @default.
- W2934678466 hasBestOaLocation W29346784661 @default.
- W2934678466 hasConcept C119857082 @default.
- W2934678466 hasConcept C126322002 @default.
- W2934678466 hasConcept C126838900 @default.
- W2934678466 hasConcept C138885662 @default.
- W2934678466 hasConcept C143753070 @default.
- W2934678466 hasConcept C154945302 @default.
- W2934678466 hasConcept C163864269 @default.
- W2934678466 hasConcept C2777077863 @default.
- W2934678466 hasConcept C2777575956 @default.
- W2934678466 hasConcept C2778724333 @default.
- W2934678466 hasConcept C2779244835 @default.
- W2934678466 hasConcept C41008148 @default.
- W2934678466 hasConcept C41895202 @default.
- W2934678466 hasConcept C50644808 @default.
- W2934678466 hasConcept C71924100 @default.
- W2934678466 hasConceptScore W2934678466C119857082 @default.
- W2934678466 hasConceptScore W2934678466C126322002 @default.
- W2934678466 hasConceptScore W2934678466C126838900 @default.
- W2934678466 hasConceptScore W2934678466C138885662 @default.
- W2934678466 hasConceptScore W2934678466C143753070 @default.
- W2934678466 hasConceptScore W2934678466C154945302 @default.
- W2934678466 hasConceptScore W2934678466C163864269 @default.
- W2934678466 hasConceptScore W2934678466C2777077863 @default.
- W2934678466 hasConceptScore W2934678466C2777575956 @default.
- W2934678466 hasConceptScore W2934678466C2778724333 @default.
- W2934678466 hasConceptScore W2934678466C2779244835 @default.
- W2934678466 hasConceptScore W2934678466C41008148 @default.
- W2934678466 hasConceptScore W2934678466C41895202 @default.
- W2934678466 hasConceptScore W2934678466C50644808 @default.
- W2934678466 hasConceptScore W2934678466C71924100 @default.
- W2934678466 hasIssue "1" @default.
- W2934678466 hasLocation W29346784661 @default.
- W2934678466 hasLocation W29346784662 @default.
- W2934678466 hasLocation W29346784663 @default.
- W2934678466 hasLocation W29346784664 @default.
- W2934678466 hasLocation W29346784665 @default.
- W2934678466 hasOpenAccess W2934678466 @default.
- W2934678466 hasPrimaryLocation W29346784661 @default.
- W2934678466 hasRelatedWork W2034240354 @default.
- W2934678466 hasRelatedWork W2104646232 @default.
- W2934678466 hasRelatedWork W2399311831 @default.
- W2934678466 hasRelatedWork W2399380222 @default.
- W2934678466 hasRelatedWork W2409257764 @default.
- W2934678466 hasRelatedWork W2559615893 @default.
- W2934678466 hasRelatedWork W2570434461 @default.
- W2934678466 hasRelatedWork W2783408504 @default.
- W2934678466 hasRelatedWork W2942194853 @default.
- W2934678466 hasRelatedWork W2977378601 @default.
- W2934678466 hasVolume "5" @default.
- W2934678466 isParatext "false" @default.
- W2934678466 isRetracted "false" @default.
- W2934678466 magId "2934678466" @default.
- W2934678466 workType "article" @default.