Matches in SemOpenAlex for { <https://semopenalex.org/work/W2934856817> ?p ?o ?g. }
- W2934856817 endingPage "555" @default.
- W2934856817 startingPage "543" @default.
- W2934856817 abstract "Nonlinear dynamics has recently been extensively used to study epilepsy due to the complex nature of the neuronal systems. This study presents a novel method that characterizes the dynamic behavior of pediatric seizure events and introduces a systematic approach to locate the nullclines on the phase space when the governing differential equations are unknown. Nullclines represent the locus of points in the solution space where the components of the velocity vectors are zero. A simulation study over 5 benchmark nonlinear systems with well-known differential equations in three-dimensional exhibits the characterization efficiency and accuracy of the proposed approach that is solely based on the reconstructed solution trajectory. Due to their unique characteristics in the nonlinear dynamics of epilepsy, discriminative features can be extracted based on the nullclines concept. Using a limited training data (only 25% of each EEG record) in order to mimic the real-world clinical practice, the proposed approach achieves 91.15% average sensitivity and 95.16% average specificity over the benchmark CHB-MIT dataset. Together with an elegant computational efficiency, the proposed approach can, therefore, be an automatic and reliable solution for patient-specific seizure detection in long EEG recordings." @default.
- W2934856817 created "2019-04-11" @default.
- W2934856817 creator A5007583477 @default.
- W2934856817 creator A5047884065 @default.
- W2934856817 creator A5047979812 @default.
- W2934856817 creator A5066441513 @default.
- W2934856817 creator A5066573310 @default.
- W2934856817 date "2020-02-01" @default.
- W2934856817 modified "2023-10-07" @default.
- W2934856817 title "Patient-Specific Seizure Detection Using Nonlinear Dynamics and Nullclines" @default.
- W2934856817 cites W1549386224 @default.
- W2934856817 cites W1599510602 @default.
- W2934856817 cites W1661597557 @default.
- W2934856817 cites W1964187083 @default.
- W2934856817 cites W1965166602 @default.
- W2934856817 cites W2008462638 @default.
- W2934856817 cites W2049103702 @default.
- W2934856817 cites W2052394872 @default.
- W2934856817 cites W2066482986 @default.
- W2934856817 cites W2075049744 @default.
- W2934856817 cites W2086659790 @default.
- W2934856817 cites W2094871671 @default.
- W2934856817 cites W2099231026 @default.
- W2934856817 cites W2112246162 @default.
- W2934856817 cites W2137213476 @default.
- W2934856817 cites W2148143831 @default.
- W2934856817 cites W2158468574 @default.
- W2934856817 cites W2162800060 @default.
- W2934856817 cites W2219026468 @default.
- W2934856817 cites W2261138581 @default.
- W2934856817 cites W2279742991 @default.
- W2934856817 cites W2284031736 @default.
- W2934856817 cites W2295774550 @default.
- W2934856817 cites W2297562951 @default.
- W2934856817 cites W2335311150 @default.
- W2934856817 cites W2342363342 @default.
- W2934856817 cites W2414548720 @default.
- W2934856817 cites W2565786333 @default.
- W2934856817 cites W2568407436 @default.
- W2934856817 cites W2594278748 @default.
- W2934856817 cites W2613502521 @default.
- W2934856817 cites W2679522991 @default.
- W2934856817 cites W2743974497 @default.
- W2934856817 cites W2796257440 @default.
- W2934856817 cites W2799268576 @default.
- W2934856817 cites W2804824909 @default.
- W2934856817 cites W2805290054 @default.
- W2934856817 cites W2874253909 @default.
- W2934856817 cites W2883876833 @default.
- W2934856817 cites W2887092592 @default.
- W2934856817 cites W2888986465 @default.
- W2934856817 cites W2889690008 @default.
- W2934856817 cites W2890956351 @default.
- W2934856817 cites W2894170005 @default.
- W2934856817 cites W2901787898 @default.
- W2934856817 cites W2904559787 @default.
- W2934856817 cites W2911546748 @default.
- W2934856817 cites W4232309031 @default.
- W2934856817 cites W59923892 @default.
- W2934856817 doi "https://doi.org/10.1109/jbhi.2019.2906400" @default.
- W2934856817 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30932854" @default.
- W2934856817 hasPublicationYear "2020" @default.
- W2934856817 type Work @default.
- W2934856817 sameAs 2934856817 @default.
- W2934856817 citedByCount "37" @default.
- W2934856817 countsByYear W29348568172019 @default.
- W2934856817 countsByYear W29348568172020 @default.
- W2934856817 countsByYear W29348568172021 @default.
- W2934856817 countsByYear W29348568172022 @default.
- W2934856817 countsByYear W29348568172023 @default.
- W2934856817 crossrefType "journal-article" @default.
- W2934856817 hasAuthorship W2934856817A5007583477 @default.
- W2934856817 hasAuthorship W2934856817A5047884065 @default.
- W2934856817 hasAuthorship W2934856817A5047979812 @default.
- W2934856817 hasAuthorship W2934856817A5066441513 @default.
- W2934856817 hasAuthorship W2934856817A5066573310 @default.
- W2934856817 hasConcept C11413529 @default.
- W2934856817 hasConcept C121332964 @default.
- W2934856817 hasConcept C127413603 @default.
- W2934856817 hasConcept C1276947 @default.
- W2934856817 hasConcept C13280743 @default.
- W2934856817 hasConcept C13662910 @default.
- W2934856817 hasConcept C153180895 @default.
- W2934856817 hasConcept C154945302 @default.
- W2934856817 hasConcept C158622935 @default.
- W2934856817 hasConcept C169760540 @default.
- W2934856817 hasConcept C185798385 @default.
- W2934856817 hasConcept C205649164 @default.
- W2934856817 hasConcept C21200559 @default.
- W2934856817 hasConcept C24326235 @default.
- W2934856817 hasConcept C2775924081 @default.
- W2934856817 hasConcept C2778186239 @default.
- W2934856817 hasConcept C2779334592 @default.
- W2934856817 hasConcept C41008148 @default.
- W2934856817 hasConcept C47446073 @default.
- W2934856817 hasConcept C62520636 @default.
- W2934856817 hasConcept C86803240 @default.
- W2934856817 hasConcept C97931131 @default.