Matches in SemOpenAlex for { <https://semopenalex.org/work/W2934974519> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2934974519 abstract "Abstract Bunch's tightness is a significant trait in determining tablegrape and wine quality. But standard determination of tightness needs the trained technicians and complex manual measurements. This study is to validate the feasibility of multiperspective imaging analysis combined with multivariate modeling methods to grade the grape bunch compactness in a rapid, automatic, and objective approach. The detection system was developed by multiperspective projection imaging structure, where mono‐camera was used to simultaneously capture the whole surface of grape bunch by two mirrors' reflections. Through series of image processes, 23 features that described bunch regions, contours, the cluster density, and so forth, were digitalized and normalized for linear projections by principal component analysis (PCA) and partial least square (PLS), respectively. Then the projected latent components were obtained and were taken as input of the developed classifiers, to qualitatively assess the bunch's tightness. Results indicated these components compressed more information from PLS than PCA projection, and PLS‐support vector machine classifier outperformed best with 88.33% accuracy rate. It was concluded that the multiperspective simultaneously imaging approach coupled with image process and pattern recognition technology could be applied to evaluate the external tightness of grape bunch. Moreover, it has the potential to be a good reference for rapid grade of berry cluster. Practical applications The proven performance of machine vision coupled with pattern recognition could be implemented in automatic measurement system to rapidly and objectively classify the tightness of postharvest grape bunch or other berry‐clustered fruit. This work could be a useful application for the specific consumptions to distinguish the tight from the loose on account of that the tightness plays a significant role in determining table grape and wine quality." @default.
- W2934974519 created "2019-04-11" @default.
- W2934974519 creator A5014117599 @default.
- W2934974519 creator A5032678494 @default.
- W2934974519 creator A5049898953 @default.
- W2934974519 date "2019-03-29" @default.
- W2934974519 modified "2023-10-18" @default.
- W2934974519 title "Grading bunch tightness for grape by multiperspective imaging approach coupled with multivariate classification methods" @default.
- W2934974519 cites W1590283363 @default.
- W2934974519 cites W1895707564 @default.
- W2934974519 cites W1905835045 @default.
- W2934974519 cites W1972593456 @default.
- W2934974519 cites W2073503722 @default.
- W2934974519 cites W2084074907 @default.
- W2934974519 cites W2087507192 @default.
- W2934974519 cites W2163715538 @default.
- W2934974519 cites W2759474895 @default.
- W2934974519 cites W2773590936 @default.
- W2934974519 cites W2891770011 @default.
- W2934974519 cites W4238284510 @default.
- W2934974519 cites W4239510810 @default.
- W2934974519 cites W815909832 @default.
- W2934974519 doi "https://doi.org/10.1111/jfpe.13052" @default.
- W2934974519 hasPublicationYear "2019" @default.
- W2934974519 type Work @default.
- W2934974519 sameAs 2934974519 @default.
- W2934974519 citedByCount "0" @default.
- W2934974519 crossrefType "journal-article" @default.
- W2934974519 hasAuthorship W2934974519A5014117599 @default.
- W2934974519 hasAuthorship W2934974519A5032678494 @default.
- W2934974519 hasAuthorship W2934974519A5049898953 @default.
- W2934974519 hasConcept C11413529 @default.
- W2934974519 hasConcept C12267149 @default.
- W2934974519 hasConcept C153180895 @default.
- W2934974519 hasConcept C154945302 @default.
- W2934974519 hasConcept C27438332 @default.
- W2934974519 hasConcept C41008148 @default.
- W2934974519 hasConcept C57493831 @default.
- W2934974519 hasConcept C73555534 @default.
- W2934974519 hasConcept C95623464 @default.
- W2934974519 hasConceptScore W2934974519C11413529 @default.
- W2934974519 hasConceptScore W2934974519C12267149 @default.
- W2934974519 hasConceptScore W2934974519C153180895 @default.
- W2934974519 hasConceptScore W2934974519C154945302 @default.
- W2934974519 hasConceptScore W2934974519C27438332 @default.
- W2934974519 hasConceptScore W2934974519C41008148 @default.
- W2934974519 hasConceptScore W2934974519C57493831 @default.
- W2934974519 hasConceptScore W2934974519C73555534 @default.
- W2934974519 hasConceptScore W2934974519C95623464 @default.
- W2934974519 hasFunder F4320321001 @default.
- W2934974519 hasIssue "4" @default.
- W2934974519 hasLocation W29349745191 @default.
- W2934974519 hasOpenAccess W2934974519 @default.
- W2934974519 hasPrimaryLocation W29349745191 @default.
- W2934974519 hasRelatedWork W1579270119 @default.
- W2934974519 hasRelatedWork W2008326590 @default.
- W2934974519 hasRelatedWork W2029718921 @default.
- W2934974519 hasRelatedWork W2085553065 @default.
- W2934974519 hasRelatedWork W2358824780 @default.
- W2934974519 hasRelatedWork W2366390874 @default.
- W2934974519 hasRelatedWork W2380927352 @default.
- W2934974519 hasRelatedWork W3178621026 @default.
- W2934974519 hasRelatedWork W2137598809 @default.
- W2934974519 hasRelatedWork W2345184372 @default.
- W2934974519 hasVolume "42" @default.
- W2934974519 isParatext "false" @default.
- W2934974519 isRetracted "false" @default.
- W2934974519 magId "2934974519" @default.
- W2934974519 workType "article" @default.