Matches in SemOpenAlex for { <https://semopenalex.org/work/W2935162105> ?p ?o ?g. }
- W2935162105 endingPage "47378" @default.
- W2935162105 startingPage "47366" @default.
- W2935162105 abstract "As the manufacturing industry is heading toward the fourth industrial revolution, smart manufacturing is born at the right moment. By integrating new information technologies, such as the Internet of Things, the cyber-physical system (CPS), big data, and artificial intelligence, smart manufacturing has endowed the factories and shop floors with much intelligence, which is characterized by the organic cooperation among workers, machines, unmanufactured products, and other physical assets. In this situation, endowing these smart physical assets with self-X intelligence and autonomy to make manufacturing resources allocation decisions autonomously has been a vital problem that needs prompt solutions. To solve this problem, this paper deals with training a reasonable knowledge model from the historical shop floor data using a hidden Markov model (HMM) theory. In this model, the unmanufactured product's machining feature/process flow is considered as an observation sequence and the corresponding smart manufacturing resources (SMRs) sequence is considered as a hidden state sequence. The solving method to train the HMM-based knowledge model for autonomous manufacturing resources allocation (A-MRA) is further described in a step-by-step manner. Thereafter, a demonstrative case is studied to verify the proposed model and method. First, 123 pairs of historical data (i.e., process flow and SMR sequence) are used to learn the HMM-based knowledge model and another 5 pairs of historical data are used to test the feasibility and accuracy of the proposed model. The results show that only three elements (total $5times 9$ elements) in the predicted SMR sequences are different from those in the historical SMR sequences, and the average vector angle between the five predicted and historical SMR sequences is 11.68°, which is relatively low considering that only nine elements exists in each SMR sequence." @default.
- W2935162105 created "2019-04-11" @default.
- W2935162105 creator A5027039464 @default.
- W2935162105 creator A5028745512 @default.
- W2935162105 creator A5072240312 @default.
- W2935162105 creator A5076701232 @default.
- W2935162105 creator A5080191219 @default.
- W2935162105 date "2019-01-01" @default.
- W2935162105 modified "2023-09-24" @default.
- W2935162105 title "Training a Hidden Markov Model-Based Knowledge Model for Autonomous Manufacturing Resources Allocation in Smart Shop Floors" @default.
- W2935162105 cites W1967964591 @default.
- W2935162105 cites W1974464728 @default.
- W2935162105 cites W1985690171 @default.
- W2935162105 cites W2039744001 @default.
- W2935162105 cites W2062528670 @default.
- W2935162105 cites W2080597521 @default.
- W2935162105 cites W2091864141 @default.
- W2935162105 cites W2097758436 @default.
- W2935162105 cites W2125838338 @default.
- W2935162105 cites W2142384583 @default.
- W2935162105 cites W2175021764 @default.
- W2935162105 cites W2189028327 @default.
- W2935162105 cites W2190184929 @default.
- W2935162105 cites W2254387532 @default.
- W2935162105 cites W2474351866 @default.
- W2935162105 cites W2523438800 @default.
- W2935162105 cites W2532281363 @default.
- W2935162105 cites W2547519534 @default.
- W2935162105 cites W2554032856 @default.
- W2935162105 cites W2561229239 @default.
- W2935162105 cites W2599557761 @default.
- W2935162105 cites W2607730367 @default.
- W2935162105 cites W2613864254 @default.
- W2935162105 cites W2625951460 @default.
- W2935162105 cites W2637562622 @default.
- W2935162105 cites W2730961798 @default.
- W2935162105 cites W2740181444 @default.
- W2935162105 cites W2767582600 @default.
- W2935162105 cites W2771783069 @default.
- W2935162105 cites W2774603528 @default.
- W2935162105 cites W2790567455 @default.
- W2935162105 cites W2886505808 @default.
- W2935162105 cites W2889314284 @default.
- W2935162105 cites W2891372415 @default.
- W2935162105 cites W2903011525 @default.
- W2935162105 cites W2910258701 @default.
- W2935162105 doi "https://doi.org/10.1109/access.2019.2909306" @default.
- W2935162105 hasPublicationYear "2019" @default.
- W2935162105 type Work @default.
- W2935162105 sameAs 2935162105 @default.
- W2935162105 citedByCount "6" @default.
- W2935162105 countsByYear W29351621052019 @default.
- W2935162105 countsByYear W29351621052020 @default.
- W2935162105 countsByYear W29351621052021 @default.
- W2935162105 countsByYear W29351621052022 @default.
- W2935162105 crossrefType "journal-article" @default.
- W2935162105 hasAuthorship W2935162105A5027039464 @default.
- W2935162105 hasAuthorship W2935162105A5028745512 @default.
- W2935162105 hasAuthorship W2935162105A5072240312 @default.
- W2935162105 hasAuthorship W2935162105A5076701232 @default.
- W2935162105 hasAuthorship W2935162105A5080191219 @default.
- W2935162105 hasBestOaLocation W29351621051 @default.
- W2935162105 hasConcept C105795698 @default.
- W2935162105 hasConcept C119857082 @default.
- W2935162105 hasConcept C121332964 @default.
- W2935162105 hasConcept C127413603 @default.
- W2935162105 hasConcept C153294291 @default.
- W2935162105 hasConcept C154945302 @default.
- W2935162105 hasConcept C159886148 @default.
- W2935162105 hasConcept C163836022 @default.
- W2935162105 hasConcept C23224414 @default.
- W2935162105 hasConcept C2777211547 @default.
- W2935162105 hasConcept C33923547 @default.
- W2935162105 hasConcept C41008148 @default.
- W2935162105 hasConcept C42475967 @default.
- W2935162105 hasConcept C98763669 @default.
- W2935162105 hasConceptScore W2935162105C105795698 @default.
- W2935162105 hasConceptScore W2935162105C119857082 @default.
- W2935162105 hasConceptScore W2935162105C121332964 @default.
- W2935162105 hasConceptScore W2935162105C127413603 @default.
- W2935162105 hasConceptScore W2935162105C153294291 @default.
- W2935162105 hasConceptScore W2935162105C154945302 @default.
- W2935162105 hasConceptScore W2935162105C159886148 @default.
- W2935162105 hasConceptScore W2935162105C163836022 @default.
- W2935162105 hasConceptScore W2935162105C23224414 @default.
- W2935162105 hasConceptScore W2935162105C2777211547 @default.
- W2935162105 hasConceptScore W2935162105C33923547 @default.
- W2935162105 hasConceptScore W2935162105C41008148 @default.
- W2935162105 hasConceptScore W2935162105C42475967 @default.
- W2935162105 hasConceptScore W2935162105C98763669 @default.
- W2935162105 hasFunder F4320321001 @default.
- W2935162105 hasFunder F4320323540 @default.
- W2935162105 hasFunder F4320335787 @default.
- W2935162105 hasLocation W29351621051 @default.
- W2935162105 hasLocation W29351621052 @default.
- W2935162105 hasOpenAccess W2935162105 @default.
- W2935162105 hasPrimaryLocation W29351621051 @default.
- W2935162105 hasRelatedWork W1985664346 @default.