Matches in SemOpenAlex for { <https://semopenalex.org/work/W293532674> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W293532674 endingPage "524" @default.
- W293532674 startingPage "517" @default.
- W293532674 abstract "We investigate the problem of tuning and selecting among interestingness measures for association rules. We first derive a parametric normalization factor for such measures that addresses imbalanced itemset sizes, and show how it can be generalized across many previously derived measures. Next, we develop a validationbased framework for both the normalization and selection tasks, based upon mutual information measures over attributes. We then apply this framework to market basket data and user profile data in weblogs, to automatically choose among or fine-tune alternative measures for generating and ranking rules. Finally, we show how the derived normalization factor can significantly improve the sensitivity of interestingness measures when used for pure association rule mining and also for a classification task. We also consider how this data-driven approach can be used for fusion of association rule sets: either those elicited from subject matter experts, or those found using prior background knowledge. INTRODUCTION One of the most important aspects of association rule mining is ranking rules by their significance, according to some quantitative measure that expresses their interestingness with respect to a decision support or associative reasoning task. Rules take the form X → Y, where both X and Y are subsets of an observed itemset L = {I1, I2, ..., Ik}. Two well-known measures for association rule interestingness are the support, P(X) and the confidence, P(Y | X). These probabilistic measures have been used with other statistical formulae to derive compound measures used in discovering the most significant rule. One limitation of existing binary measures of rule interestingness is that they do not account for the relative size of the itemsets to which each candidate pair of associated subsets (X, Y) belongs. Moreover, there are some hidden associations related to candidates appearing in small groups. Thus, giving some attention and weight to these small groups may lead us to a different relationship perspective. This kind of data behavior can be seen, for example, in social network data where each user record consists of features such as interests, communities, schools attended, etc. In particular, user’s list of interests, each of which corresponds to a list of interest holders. Some interests such as “DNA replication” have low membership; whether this is because the interests are less popular or more specialized, it often suggests a more significant association between users naming them than between those who have interests such as “Music” or “Games” in" @default.
- W293532674 created "2016-06-24" @default.
- W293532674 creator A5007939857 @default.
- W293532674 creator A5019930104 @default.
- W293532674 creator A5067341711 @default.
- W293532674 creator A5071693063 @default.
- W293532674 creator A5084597959 @default.
- W293532674 date "2010-06-30" @default.
- W293532674 modified "2023-09-26" @default.
- W293532674 title "Validation-Based Normalization and Selection of Interestingness Measures for Association Rules" @default.
- W293532674 cites W1484126642 @default.
- W293532674 cites W1519164029 @default.
- W293532674 cites W1579459092 @default.
- W293532674 cites W181053344 @default.
- W293532674 cites W2037965136 @default.
- W293532674 cites W2066277072 @default.
- W293532674 cites W2102297485 @default.
- W293532674 cites W2114134542 @default.
- W293532674 cites W2133109597 @default.
- W293532674 cites W2168299138 @default.
- W293532674 cites W2182951319 @default.
- W293532674 cites W2405282077 @default.
- W293532674 doi "https://doi.org/10.1115/1.802823.paper65" @default.
- W293532674 hasPublicationYear "2010" @default.
- W293532674 type Work @default.
- W293532674 sameAs 293532674 @default.
- W293532674 citedByCount "13" @default.
- W293532674 countsByYear W2935326742014 @default.
- W293532674 countsByYear W2935326742015 @default.
- W293532674 countsByYear W2935326742019 @default.
- W293532674 crossrefType "book-chapter" @default.
- W293532674 hasAuthorship W293532674A5007939857 @default.
- W293532674 hasAuthorship W293532674A5019930104 @default.
- W293532674 hasAuthorship W293532674A5067341711 @default.
- W293532674 hasAuthorship W293532674A5071693063 @default.
- W293532674 hasAuthorship W293532674A5084597959 @default.
- W293532674 hasConcept C119857082 @default.
- W293532674 hasConcept C124101348 @default.
- W293532674 hasConcept C136886441 @default.
- W293532674 hasConcept C144024400 @default.
- W293532674 hasConcept C154945302 @default.
- W293532674 hasConcept C159423971 @default.
- W293532674 hasConcept C189430467 @default.
- W293532674 hasConcept C19165224 @default.
- W293532674 hasConcept C193524817 @default.
- W293532674 hasConcept C202444582 @default.
- W293532674 hasConcept C33923547 @default.
- W293532674 hasConcept C41008148 @default.
- W293532674 hasConcept C49937458 @default.
- W293532674 hasConceptScore W293532674C119857082 @default.
- W293532674 hasConceptScore W293532674C124101348 @default.
- W293532674 hasConceptScore W293532674C136886441 @default.
- W293532674 hasConceptScore W293532674C144024400 @default.
- W293532674 hasConceptScore W293532674C154945302 @default.
- W293532674 hasConceptScore W293532674C159423971 @default.
- W293532674 hasConceptScore W293532674C189430467 @default.
- W293532674 hasConceptScore W293532674C19165224 @default.
- W293532674 hasConceptScore W293532674C193524817 @default.
- W293532674 hasConceptScore W293532674C202444582 @default.
- W293532674 hasConceptScore W293532674C33923547 @default.
- W293532674 hasConceptScore W293532674C41008148 @default.
- W293532674 hasConceptScore W293532674C49937458 @default.
- W293532674 hasLocation W2935326741 @default.
- W293532674 hasOpenAccess W293532674 @default.
- W293532674 hasPrimaryLocation W2935326741 @default.
- W293532674 hasRelatedWork W12938348 @default.
- W293532674 hasRelatedWork W131532953 @default.
- W293532674 hasRelatedWork W1550000897 @default.
- W293532674 hasRelatedWork W1825609200 @default.
- W293532674 hasRelatedWork W1974151415 @default.
- W293532674 hasRelatedWork W1979037486 @default.
- W293532674 hasRelatedWork W2039852163 @default.
- W293532674 hasRelatedWork W2060490616 @default.
- W293532674 hasRelatedWork W2066277072 @default.
- W293532674 hasRelatedWork W2102297485 @default.
- W293532674 hasRelatedWork W2148813182 @default.
- W293532674 hasRelatedWork W2154663323 @default.
- W293532674 hasRelatedWork W2162921869 @default.
- W293532674 hasRelatedWork W2217542537 @default.
- W293532674 hasRelatedWork W2318633626 @default.
- W293532674 hasRelatedWork W2405282077 @default.
- W293532674 hasRelatedWork W24164901 @default.
- W293532674 hasRelatedWork W2736156679 @default.
- W293532674 hasRelatedWork W56684036 @default.
- W293532674 hasRelatedWork W3098348668 @default.
- W293532674 isParatext "false" @default.
- W293532674 isRetracted "false" @default.
- W293532674 magId "293532674" @default.
- W293532674 workType "book-chapter" @default.