Matches in SemOpenAlex for { <https://semopenalex.org/work/W2935707851> ?p ?o ?g. }
- W2935707851 abstract "In this paper, we present an end-to-end approach for environmental sound classification based on a 1D Convolution Neural Network (CNN) that learns a representation directly from the audio signal. Several convolutional layers are used to capture the signal's fine time structure and learn diverse filters that are relevant to the classification task. The proposed approach can deal with audio signals of any length as it splits the signal into overlapped frames using a sliding window. Different architectures considering several input sizes are evaluated, including the initialization of the first convolutional layer with a Gammatone filterbank that models the human auditory filter response in the cochlea. The performance of the proposed end-to-end approach in classifying environmental sounds was assessed on the UrbanSound8k dataset and the experimental results have shown that it achieves 89% of mean accuracy. Therefore, the propose approach outperforms most of the state-of-the-art approaches that use handcrafted features or 2D representations as input. Furthermore, the proposed approach has a small number of parameters compared to other architectures found in the literature, which reduces the amount of data required for training." @default.
- W2935707851 created "2019-04-25" @default.
- W2935707851 creator A5010129767 @default.
- W2935707851 creator A5051056084 @default.
- W2935707851 creator A5074262951 @default.
- W2935707851 date "2019-04-18" @default.
- W2935707851 modified "2023-09-27" @default.
- W2935707851 title "End-to-End Environmental Sound Classification using a 1D Convolutional Neural Network" @default.
- W2935707851 cites W1496704041 @default.
- W2935707851 cites W1511170870 @default.
- W2935707851 cites W1521590293 @default.
- W2935707851 cites W1542280630 @default.
- W2935707851 cites W1635512741 @default.
- W2935707851 cites W1686810756 @default.
- W2935707851 cites W1836465849 @default.
- W2935707851 cites W1875800788 @default.
- W2935707851 cites W1966311970 @default.
- W2935707851 cites W1972567154 @default.
- W2935707851 cites W2038484192 @default.
- W2935707851 cites W2052666245 @default.
- W2935707851 cites W2059652044 @default.
- W2935707851 cites W2069943693 @default.
- W2935707851 cites W2076608692 @default.
- W2935707851 cites W2086384421 @default.
- W2935707851 cites W2095705004 @default.
- W2935707851 cites W2130640900 @default.
- W2935707851 cites W2135342008 @default.
- W2935707851 cites W2158275940 @default.
- W2935707851 cites W2194775991 @default.
- W2935707851 cites W2211849486 @default.
- W2935707851 cites W2232894815 @default.
- W2935707851 cites W2398243923 @default.
- W2935707851 cites W2398826216 @default.
- W2935707851 cites W2403172465 @default.
- W2935707851 cites W2403438050 @default.
- W2935707851 cites W2526050071 @default.
- W2935707851 cites W2529337537 @default.
- W2935707851 cites W2544224704 @default.
- W2935707851 cites W2557283755 @default.
- W2935707851 cites W2563031223 @default.
- W2935707851 cites W2593451766 @default.
- W2935707851 cites W2768188490 @default.
- W2935707851 cites W2808998745 @default.
- W2935707851 cites W2890026644 @default.
- W2935707851 cites W2902422112 @default.
- W2935707851 cites W2912899030 @default.
- W2935707851 cites W2963232038 @default.
- W2935707851 cites W2963420686 @default.
- W2935707851 cites W2963669405 @default.
- W2935707851 cites W2964052309 @default.
- W2935707851 cites W3098357269 @default.
- W2935707851 cites W3100031071 @default.
- W2935707851 cites W6908809 @default.
- W2935707851 hasPublicationYear "2019" @default.
- W2935707851 type Work @default.
- W2935707851 sameAs 2935707851 @default.
- W2935707851 citedByCount "0" @default.
- W2935707851 crossrefType "posted-content" @default.
- W2935707851 hasAuthorship W2935707851A5010129767 @default.
- W2935707851 hasAuthorship W2935707851A5051056084 @default.
- W2935707851 hasAuthorship W2935707851A5074262951 @default.
- W2935707851 hasConcept C100515483 @default.
- W2935707851 hasConcept C106131492 @default.
- W2935707851 hasConcept C114466953 @default.
- W2935707851 hasConcept C13895895 @default.
- W2935707851 hasConcept C153180895 @default.
- W2935707851 hasConcept C154945302 @default.
- W2935707851 hasConcept C162324750 @default.
- W2935707851 hasConcept C17744445 @default.
- W2935707851 hasConcept C187736073 @default.
- W2935707851 hasConcept C199360897 @default.
- W2935707851 hasConcept C199539241 @default.
- W2935707851 hasConcept C2776359362 @default.
- W2935707851 hasConcept C2779843651 @default.
- W2935707851 hasConcept C2780451532 @default.
- W2935707851 hasConcept C28490314 @default.
- W2935707851 hasConcept C31972630 @default.
- W2935707851 hasConcept C41008148 @default.
- W2935707851 hasConcept C45347329 @default.
- W2935707851 hasConcept C50644808 @default.
- W2935707851 hasConcept C64922751 @default.
- W2935707851 hasConcept C74296488 @default.
- W2935707851 hasConcept C81363708 @default.
- W2935707851 hasConcept C94625758 @default.
- W2935707851 hasConceptScore W2935707851C100515483 @default.
- W2935707851 hasConceptScore W2935707851C106131492 @default.
- W2935707851 hasConceptScore W2935707851C114466953 @default.
- W2935707851 hasConceptScore W2935707851C13895895 @default.
- W2935707851 hasConceptScore W2935707851C153180895 @default.
- W2935707851 hasConceptScore W2935707851C154945302 @default.
- W2935707851 hasConceptScore W2935707851C162324750 @default.
- W2935707851 hasConceptScore W2935707851C17744445 @default.
- W2935707851 hasConceptScore W2935707851C187736073 @default.
- W2935707851 hasConceptScore W2935707851C199360897 @default.
- W2935707851 hasConceptScore W2935707851C199539241 @default.
- W2935707851 hasConceptScore W2935707851C2776359362 @default.
- W2935707851 hasConceptScore W2935707851C2779843651 @default.
- W2935707851 hasConceptScore W2935707851C2780451532 @default.
- W2935707851 hasConceptScore W2935707851C28490314 @default.
- W2935707851 hasConceptScore W2935707851C31972630 @default.