Matches in SemOpenAlex for { <https://semopenalex.org/work/W2935834401> ?p ?o ?g. }
- W2935834401 endingPage "180" @default.
- W2935834401 startingPage "129" @default.
- W2935834401 abstract "In medical imaging, several authors have proposed to characterize roughness of observed textures by their fractal dimensions. Fractal analysis of 1D signals is mainly based on the stochastic modeling using the famous fractional Brownian motion for which the fractal dimension is determined by its so-called Hurst parameter. Lots of 2D generalizations of this toy model may be defined according to the scope. This lecture intends to present some of them. After an introduction to random fields, the first part will focus on the construction of Gaussian random fields with prescribed invariance properties such as stationarity, self-similarity, or operator scaling property. Sample paths properties such as modulus of continuity and Hausdorff dimension of graphs will be settled in the second part to understand links with fractal analysis. The third part will concern some methods of simulation and estimation for these random fields in a discrete setting. Some applications in medical imaging will be presented. Finally, the last part will be devoted to geometric constructions involving Marked Poisson Point Processes and shot noise processes." @default.
- W2935834401 created "2019-04-25" @default.
- W2935834401 creator A5005151103 @default.
- W2935834401 date "2019-01-01" @default.
- W2935834401 modified "2023-10-03" @default.
- W2935834401 title "Introduction to Random Fields and Scale Invariance" @default.
- W2935834401 cites W1277962881 @default.
- W2935834401 cites W1965262908 @default.
- W2935834401 cites W1967426304 @default.
- W2935834401 cites W1967924750 @default.
- W2935834401 cites W1983218172 @default.
- W2935834401 cites W1983913268 @default.
- W2935834401 cites W1990200755 @default.
- W2935834401 cites W1990795692 @default.
- W2935834401 cites W2015846778 @default.
- W2935834401 cites W2031753087 @default.
- W2935834401 cites W2032336008 @default.
- W2935834401 cites W2034878396 @default.
- W2935834401 cites W2056894411 @default.
- W2935834401 cites W2056902744 @default.
- W2935834401 cites W2060504103 @default.
- W2935834401 cites W2065302460 @default.
- W2935834401 cites W2067543687 @default.
- W2935834401 cites W2075361166 @default.
- W2935834401 cites W2079559649 @default.
- W2935834401 cites W2080937551 @default.
- W2935834401 cites W2082781924 @default.
- W2935834401 cites W2088555890 @default.
- W2935834401 cites W2106372111 @default.
- W2935834401 cites W2110906205 @default.
- W2935834401 cites W2112257301 @default.
- W2935834401 cites W2114939640 @default.
- W2935834401 cites W2118248785 @default.
- W2935834401 cites W2136516258 @default.
- W2935834401 cites W2139890535 @default.
- W2935834401 cites W2146625018 @default.
- W2935834401 cites W2151184871 @default.
- W2935834401 cites W2163877379 @default.
- W2935834401 cites W2204538763 @default.
- W2935834401 cites W2299125783 @default.
- W2935834401 cites W2509407865 @default.
- W2935834401 cites W2609362711 @default.
- W2935834401 cites W2752353013 @default.
- W2935834401 cites W4206256679 @default.
- W2935834401 cites W4292198165 @default.
- W2935834401 cites W4300581904 @default.
- W2935834401 cites W51959080 @default.
- W2935834401 cites W624584418 @default.
- W2935834401 cites W2094020075 @default.
- W2935834401 doi "https://doi.org/10.1007/978-3-030-13547-8_4" @default.
- W2935834401 hasPublicationYear "2019" @default.
- W2935834401 type Work @default.
- W2935834401 sameAs 2935834401 @default.
- W2935834401 citedByCount "3" @default.
- W2935834401 countsByYear W29358344012020 @default.
- W2935834401 countsByYear W29358344012021 @default.
- W2935834401 countsByYear W29358344012023 @default.
- W2935834401 crossrefType "book-chapter" @default.
- W2935834401 hasAuthorship W2935834401A5005151103 @default.
- W2935834401 hasBestOaLocation W29358344012 @default.
- W2935834401 hasConcept C100906024 @default.
- W2935834401 hasConcept C105795698 @default.
- W2935834401 hasConcept C108819105 @default.
- W2935834401 hasConcept C112401455 @default.
- W2935834401 hasConcept C121332964 @default.
- W2935834401 hasConcept C121864883 @default.
- W2935834401 hasConcept C130402806 @default.
- W2935834401 hasConcept C134306372 @default.
- W2935834401 hasConcept C135593079 @default.
- W2935834401 hasConcept C162494671 @default.
- W2935834401 hasConcept C163716315 @default.
- W2935834401 hasConcept C26546657 @default.
- W2935834401 hasConcept C33923547 @default.
- W2935834401 hasConcept C40636538 @default.
- W2935834401 hasConcept C62520636 @default.
- W2935834401 hasConcept C96175551 @default.
- W2935834401 hasConceptScore W2935834401C100906024 @default.
- W2935834401 hasConceptScore W2935834401C105795698 @default.
- W2935834401 hasConceptScore W2935834401C108819105 @default.
- W2935834401 hasConceptScore W2935834401C112401455 @default.
- W2935834401 hasConceptScore W2935834401C121332964 @default.
- W2935834401 hasConceptScore W2935834401C121864883 @default.
- W2935834401 hasConceptScore W2935834401C130402806 @default.
- W2935834401 hasConceptScore W2935834401C134306372 @default.
- W2935834401 hasConceptScore W2935834401C135593079 @default.
- W2935834401 hasConceptScore W2935834401C162494671 @default.
- W2935834401 hasConceptScore W2935834401C163716315 @default.
- W2935834401 hasConceptScore W2935834401C26546657 @default.
- W2935834401 hasConceptScore W2935834401C33923547 @default.
- W2935834401 hasConceptScore W2935834401C40636538 @default.
- W2935834401 hasConceptScore W2935834401C62520636 @default.
- W2935834401 hasConceptScore W2935834401C96175551 @default.
- W2935834401 hasLocation W29358344011 @default.
- W2935834401 hasLocation W29358344012 @default.
- W2935834401 hasLocation W29358344013 @default.
- W2935834401 hasLocation W29358344014 @default.
- W2935834401 hasLocation W29358344015 @default.
- W2935834401 hasOpenAccess W2935834401 @default.