Matches in SemOpenAlex for { <https://semopenalex.org/work/W2935879897> ?p ?o ?g. }
- W2935879897 abstract "This paper examines the uniqueness of weak solutions to the d-dimensional magnetohydrodynamic (MHD) equations with the fractional dissipation $(-Delta)^alpha u$ and without the magnetic diffusion. Important progress has been made on the standard Laplacian dissipation case $alpha=1$. This paper discovers that there are new phenomena with the case $alpha<1$. The approach for $alpha=1$ can not be directly extended to $alpha<1$. We establish that, for $alpha<1$, any initial data $(u_0, b_0)$ in the inhomogeneous Besov space $B^sigma_{2,infty}(mathbb R^d)$ with $sigma> 1+frac{d}{2}-alpha$ leads to a unique local solution. For the case $alphage 1$, $u_0$ in the homogeneous Besov space $mathring B^{1+frac{d}{2}-2alpha}_{2,1}(mathbb R^d)$ and $b_0$ in $ mathring B^{1+frac{d}{2}-alpha}_{2,1}(mathbb R^d)$ guarantees the existence and uniqueness. These regularity requirements appear to be optimal." @default.
- W2935879897 created "2019-04-25" @default.
- W2935879897 creator A5016812181 @default.
- W2935879897 creator A5030163330 @default.
- W2935879897 creator A5061653063 @default.
- W2935879897 creator A5088414276 @default.
- W2935879897 date "2019-04-11" @default.
- W2935879897 modified "2023-09-26" @default.
- W2935879897 title "Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation" @default.
- W2935879897 cites W1535319857 @default.
- W2935879897 cites W1563233433 @default.
- W2935879897 cites W1574127304 @default.
- W2935879897 cites W162854683 @default.
- W2935879897 cites W166242285 @default.
- W2935879897 cites W1966496103 @default.
- W2935879897 cites W1968935464 @default.
- W2935879897 cites W1985898993 @default.
- W2935879897 cites W1991281189 @default.
- W2935879897 cites W2003196052 @default.
- W2935879897 cites W2049973561 @default.
- W2935879897 cites W2087998486 @default.
- W2935879897 cites W2092216775 @default.
- W2935879897 cites W2104523731 @default.
- W2935879897 cites W2117657872 @default.
- W2935879897 cites W2151210652 @default.
- W2935879897 cites W2252668710 @default.
- W2935879897 cites W2738394304 @default.
- W2935879897 cites W2755734799 @default.
- W2935879897 cites W2884131553 @default.
- W2935879897 cites W2963057747 @default.
- W2935879897 cites W2963448251 @default.
- W2935879897 cites W2963529844 @default.
- W2935879897 cites W2963826932 @default.
- W2935879897 cites W2964006376 @default.
- W2935879897 cites W2964305021 @default.
- W2935879897 cites W560409768 @default.
- W2935879897 doi "https://doi.org/10.48550/arxiv.1904.06006" @default.
- W2935879897 hasPublicationYear "2019" @default.
- W2935879897 type Work @default.
- W2935879897 sameAs 2935879897 @default.
- W2935879897 citedByCount "0" @default.
- W2935879897 crossrefType "posted-content" @default.
- W2935879897 hasAuthorship W2935879897A5016812181 @default.
- W2935879897 hasAuthorship W2935879897A5030163330 @default.
- W2935879897 hasAuthorship W2935879897A5061653063 @default.
- W2935879897 hasAuthorship W2935879897A5088414276 @default.
- W2935879897 hasBestOaLocation W29358798971 @default.
- W2935879897 hasConcept C104317684 @default.
- W2935879897 hasConcept C115260700 @default.
- W2935879897 hasConcept C121332964 @default.
- W2935879897 hasConcept C129698243 @default.
- W2935879897 hasConcept C134306372 @default.
- W2935879897 hasConcept C135402231 @default.
- W2935879897 hasConcept C138885662 @default.
- W2935879897 hasConcept C185592680 @default.
- W2935879897 hasConcept C2775913539 @default.
- W2935879897 hasConcept C2777021972 @default.
- W2935879897 hasConcept C2778572836 @default.
- W2935879897 hasConcept C31532427 @default.
- W2935879897 hasConcept C33923547 @default.
- W2935879897 hasConcept C37914503 @default.
- W2935879897 hasConcept C41895202 @default.
- W2935879897 hasConcept C42471609 @default.
- W2935879897 hasConcept C55112680 @default.
- W2935879897 hasConcept C55493867 @default.
- W2935879897 hasConcept C6183050 @default.
- W2935879897 hasConcept C62520636 @default.
- W2935879897 hasConcept C66882249 @default.
- W2935879897 hasConcept C97355855 @default.
- W2935879897 hasConceptScore W2935879897C104317684 @default.
- W2935879897 hasConceptScore W2935879897C115260700 @default.
- W2935879897 hasConceptScore W2935879897C121332964 @default.
- W2935879897 hasConceptScore W2935879897C129698243 @default.
- W2935879897 hasConceptScore W2935879897C134306372 @default.
- W2935879897 hasConceptScore W2935879897C135402231 @default.
- W2935879897 hasConceptScore W2935879897C138885662 @default.
- W2935879897 hasConceptScore W2935879897C185592680 @default.
- W2935879897 hasConceptScore W2935879897C2775913539 @default.
- W2935879897 hasConceptScore W2935879897C2777021972 @default.
- W2935879897 hasConceptScore W2935879897C2778572836 @default.
- W2935879897 hasConceptScore W2935879897C31532427 @default.
- W2935879897 hasConceptScore W2935879897C33923547 @default.
- W2935879897 hasConceptScore W2935879897C37914503 @default.
- W2935879897 hasConceptScore W2935879897C41895202 @default.
- W2935879897 hasConceptScore W2935879897C42471609 @default.
- W2935879897 hasConceptScore W2935879897C55112680 @default.
- W2935879897 hasConceptScore W2935879897C55493867 @default.
- W2935879897 hasConceptScore W2935879897C6183050 @default.
- W2935879897 hasConceptScore W2935879897C62520636 @default.
- W2935879897 hasConceptScore W2935879897C66882249 @default.
- W2935879897 hasConceptScore W2935879897C97355855 @default.
- W2935879897 hasLocation W29358798971 @default.
- W2935879897 hasOpenAccess W2935879897 @default.
- W2935879897 hasPrimaryLocation W29358798971 @default.
- W2935879897 hasRelatedWork W2026464076 @default.
- W2935879897 hasRelatedWork W2036905084 @default.
- W2935879897 hasRelatedWork W2222678759 @default.
- W2935879897 hasRelatedWork W2745830371 @default.
- W2935879897 hasRelatedWork W2807436620 @default.
- W2935879897 hasRelatedWork W2889169004 @default.