Matches in SemOpenAlex for { <https://semopenalex.org/work/W2935996710> ?p ?o ?g. }
- W2935996710 abstract "Abstract Familial hypercholesterolemia (FH) is an underdiagnosed dominant genetic condition affecting approximately 0.4% of the population and has up to a 20-fold increased risk of coronary artery disease if untreated. Simple screening strategies have false positive rates greater than 95%. As part of the FH Foundation′s FIND FH initiative, we developed a classifier to identify potential FH patients using electronic health record (EHR) data at Stanford Health Care. We trained a random forest classifier using data from known patients ( n = 197) and matched non-cases ( n = 6590). Our classifier obtained a positive predictive value (PPV) of 0.88 and sensitivity of 0.75 on a held-out test-set. We evaluated the accuracy of the classifier′s predictions by chart review of 100 patients at risk of FH not included in the original dataset. The classifier correctly flagged 84% of patients at the highest probability threshold, with decreasing performance as the threshold lowers. In external validation on 466 FH patients (236 with genetically proven FH) and 5000 matched non-cases from the Geisinger Healthcare System our FH classifier achieved a PPV of 0.85. Our EHR-derived FH classifier is effective in finding candidate patients for further FH screening. Such machine learning guided strategies can lead to effective identification of the highest risk patients for enhanced management strategies." @default.
- W2935996710 created "2019-04-25" @default.
- W2935996710 creator A5005299025 @default.
- W2935996710 creator A5011590035 @default.
- W2935996710 creator A5013851971 @default.
- W2935996710 creator A5014760913 @default.
- W2935996710 creator A5017737115 @default.
- W2935996710 creator A5018480901 @default.
- W2935996710 creator A5024387589 @default.
- W2935996710 creator A5027042305 @default.
- W2935996710 creator A5027488967 @default.
- W2935996710 creator A5039025300 @default.
- W2935996710 creator A5041175834 @default.
- W2935996710 creator A5052262400 @default.
- W2935996710 creator A5057563096 @default.
- W2935996710 creator A5064400662 @default.
- W2935996710 creator A5067149045 @default.
- W2935996710 creator A5077894746 @default.
- W2935996710 creator A5088758683 @default.
- W2935996710 creator A5090267663 @default.
- W2935996710 date "2019-04-11" @default.
- W2935996710 modified "2023-10-06" @default.
- W2935996710 title "Finding missed cases of familial hypercholesterolemia in health systems using machine learning" @default.
- W2935996710 cites W1126991912 @default.
- W2935996710 cites W1596932914 @default.
- W2935996710 cites W166169566 @default.
- W2935996710 cites W1844854928 @default.
- W2935996710 cites W1901616594 @default.
- W2935996710 cites W1986498373 @default.
- W2935996710 cites W2000054710 @default.
- W2935996710 cites W2019071303 @default.
- W2935996710 cites W2042489459 @default.
- W2935996710 cites W2054119723 @default.
- W2935996710 cites W2088263677 @default.
- W2935996710 cites W2104211766 @default.
- W2935996710 cites W2105541785 @default.
- W2935996710 cites W2139865360 @default.
- W2935996710 cites W2149676192 @default.
- W2935996710 cites W2157995113 @default.
- W2935996710 cites W2165624352 @default.
- W2935996710 cites W2177870565 @default.
- W2935996710 cites W2304142550 @default.
- W2935996710 cites W2325583450 @default.
- W2935996710 cites W2410774145 @default.
- W2935996710 cites W2411394600 @default.
- W2935996710 cites W2496585186 @default.
- W2935996710 cites W2516351633 @default.
- W2935996710 cites W2525984666 @default.
- W2935996710 cites W2567297878 @default.
- W2935996710 cites W2587798296 @default.
- W2935996710 cites W2736457837 @default.
- W2935996710 cites W2786221479 @default.
- W2935996710 cites W2787894218 @default.
- W2935996710 cites W2791466251 @default.
- W2935996710 cites W2887629426 @default.
- W2935996710 cites W2905483812 @default.
- W2935996710 cites W2911964244 @default.
- W2935996710 cites W4236673002 @default.
- W2935996710 doi "https://doi.org/10.1038/s41746-019-0101-5" @default.
- W2935996710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6550268" @default.
- W2935996710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31304370" @default.
- W2935996710 hasPublicationYear "2019" @default.
- W2935996710 type Work @default.
- W2935996710 sameAs 2935996710 @default.
- W2935996710 citedByCount "65" @default.
- W2935996710 countsByYear W29359967102018 @default.
- W2935996710 countsByYear W29359967102019 @default.
- W2935996710 countsByYear W29359967102020 @default.
- W2935996710 countsByYear W29359967102021 @default.
- W2935996710 countsByYear W29359967102022 @default.
- W2935996710 countsByYear W29359967102023 @default.
- W2935996710 crossrefType "journal-article" @default.
- W2935996710 hasAuthorship W2935996710A5005299025 @default.
- W2935996710 hasAuthorship W2935996710A5011590035 @default.
- W2935996710 hasAuthorship W2935996710A5013851971 @default.
- W2935996710 hasAuthorship W2935996710A5014760913 @default.
- W2935996710 hasAuthorship W2935996710A5017737115 @default.
- W2935996710 hasAuthorship W2935996710A5018480901 @default.
- W2935996710 hasAuthorship W2935996710A5024387589 @default.
- W2935996710 hasAuthorship W2935996710A5027042305 @default.
- W2935996710 hasAuthorship W2935996710A5027488967 @default.
- W2935996710 hasAuthorship W2935996710A5039025300 @default.
- W2935996710 hasAuthorship W2935996710A5041175834 @default.
- W2935996710 hasAuthorship W2935996710A5052262400 @default.
- W2935996710 hasAuthorship W2935996710A5057563096 @default.
- W2935996710 hasAuthorship W2935996710A5064400662 @default.
- W2935996710 hasAuthorship W2935996710A5067149045 @default.
- W2935996710 hasAuthorship W2935996710A5077894746 @default.
- W2935996710 hasAuthorship W2935996710A5088758683 @default.
- W2935996710 hasAuthorship W2935996710A5090267663 @default.
- W2935996710 hasBestOaLocation W29359967101 @default.
- W2935996710 hasConcept C119857082 @default.
- W2935996710 hasConcept C126322002 @default.
- W2935996710 hasConcept C154945302 @default.
- W2935996710 hasConcept C160735492 @default.
- W2935996710 hasConcept C162324750 @default.
- W2935996710 hasConcept C169258074 @default.
- W2935996710 hasConcept C2778163477 @default.
- W2935996710 hasConcept C2778213512 @default.
- W2935996710 hasConcept C2779120738 @default.