Matches in SemOpenAlex for { <https://semopenalex.org/work/W2936187816> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2936187816 abstract "Non-intrusive Load Monitoring (NILM) is a technology that allows the identification of individual electrical loads from a single aggregated measurement of voltage/current, hence, useful for diagnostic of the consumption of electrical energy. This is performed by means of load detection and disaggregation techniques, as there are several different power signatures from the active loads. In order to develop more precise and efficient strategies and algorithms for load detection and disaggregation, several efforts have been made to build datasets that represent different scenarios of combined power loads and the events that cause changes in their states, such as power on and power off. The research presented here shows the conception of a new dataset for NILM research, from the analysis of the limitations of existing datasets, as well as the development and evaluation of a data collecting jig that is being used to collect this dataset. As a result, the infrastructure has been set up to build the LIT dataset, which is expected to provide the NILM field of study with more precise data for power signature analysis." @default.
- W2936187816 created "2019-04-25" @default.
- W2936187816 creator A5001203500 @default.
- W2936187816 creator A5018546513 @default.
- W2936187816 creator A5045783326 @default.
- W2936187816 creator A5047429271 @default.
- W2936187816 creator A5072128736 @default.
- W2936187816 creator A5087642045 @default.
- W2936187816 creator A5088729127 @default.
- W2936187816 date "2018-11-01" @default.
- W2936187816 modified "2023-09-25" @default.
- W2936187816 title "Designing a Novel Dataset for Non-intrusive Load Monitoring" @default.
- W2936187816 cites W1996944908 @default.
- W2936187816 cites W2020517213 @default.
- W2936187816 cites W2123910460 @default.
- W2936187816 cites W2908201853 @default.
- W2936187816 doi "https://doi.org/10.1109/sbesc.2018.00045" @default.
- W2936187816 hasPublicationYear "2018" @default.
- W2936187816 type Work @default.
- W2936187816 sameAs 2936187816 @default.
- W2936187816 citedByCount "8" @default.
- W2936187816 countsByYear W29361878162018 @default.
- W2936187816 countsByYear W29361878162019 @default.
- W2936187816 countsByYear W29361878162020 @default.
- W2936187816 countsByYear W29361878162021 @default.
- W2936187816 countsByYear W29361878162022 @default.
- W2936187816 crossrefType "proceedings-article" @default.
- W2936187816 hasAuthorship W2936187816A5001203500 @default.
- W2936187816 hasAuthorship W2936187816A5018546513 @default.
- W2936187816 hasAuthorship W2936187816A5045783326 @default.
- W2936187816 hasAuthorship W2936187816A5047429271 @default.
- W2936187816 hasAuthorship W2936187816A5072128736 @default.
- W2936187816 hasAuthorship W2936187816A5087642045 @default.
- W2936187816 hasAuthorship W2936187816A5088729127 @default.
- W2936187816 hasConcept C41008148 @default.
- W2936187816 hasConceptScore W2936187816C41008148 @default.
- W2936187816 hasLocation W29361878161 @default.
- W2936187816 hasOpenAccess W2936187816 @default.
- W2936187816 hasPrimaryLocation W29361878161 @default.
- W2936187816 hasRelatedWork W1596801655 @default.
- W2936187816 hasRelatedWork W2049775471 @default.
- W2936187816 hasRelatedWork W2350741829 @default.
- W2936187816 hasRelatedWork W2358668433 @default.
- W2936187816 hasRelatedWork W2376932109 @default.
- W2936187816 hasRelatedWork W2382290278 @default.
- W2936187816 hasRelatedWork W2390279801 @default.
- W2936187816 hasRelatedWork W2748952813 @default.
- W2936187816 hasRelatedWork W2899084033 @default.
- W2936187816 hasRelatedWork W2530322880 @default.
- W2936187816 isParatext "false" @default.
- W2936187816 isRetracted "false" @default.
- W2936187816 magId "2936187816" @default.
- W2936187816 workType "article" @default.