Matches in SemOpenAlex for { <https://semopenalex.org/work/W2936302732> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2936302732 endingPage "6" @default.
- W2936302732 startingPage "1" @default.
- W2936302732 abstract "A novel method for automatic categorization of thermoluminescent dosimeter (TLD) glow curve (GC) anomalies is presented. This automatic categorization will improve the metrological process of dose estimation by enhancing both its repeatability and its accuracy. Moreover, it will help external dosimetry laboratories to forecast some of the malfunctions of their TLD readers. A degenerated automatic approach was previously used in order to differentiate between a regular GC and an anomalous one, without being able to distinguish between different types of anomalies. That approach is now substantially extended to implicitly enable the categorization of GCs into five different kinds of anomalies. The machine learning algorithm applied for this purpose is support vector machines (SVM). The SVM algorithm categorizes TLD GCs into either a ‘good’ GC or into five types of TLD GC anomalies. When applied on an uncategorized GC, SVM associates it with a classification probability for each of the six categories. Results show an accuracy rate between 87.5% and 89% for the correct categorization of GCs to either of the six classes, depending on the presence of 'spikes' class in the data." @default.
- W2936302732 created "2019-04-25" @default.
- W2936302732 creator A5031370575 @default.
- W2936302732 creator A5065593423 @default.
- W2936302732 date "2019-06-01" @default.
- W2936302732 modified "2023-10-16" @default.
- W2936302732 title "Computerized categorization of TLD glow curve anomalies using multi-class classification support vector machines" @default.
- W2936302732 cites W1980149811 @default.
- W2936302732 cites W1993482042 @default.
- W2936302732 cites W2024216203 @default.
- W2936302732 cites W2044998301 @default.
- W2936302732 cites W2055522016 @default.
- W2936302732 cites W2075198991 @default.
- W2936302732 cites W2103419412 @default.
- W2936302732 cites W2108728387 @default.
- W2936302732 cites W2116525699 @default.
- W2936302732 cites W2160794449 @default.
- W2936302732 cites W2595318578 @default.
- W2936302732 cites W2884565271 @default.
- W2936302732 doi "https://doi.org/10.1016/j.radmeas.2019.04.015" @default.
- W2936302732 hasPublicationYear "2019" @default.
- W2936302732 type Work @default.
- W2936302732 sameAs 2936302732 @default.
- W2936302732 citedByCount "3" @default.
- W2936302732 countsByYear W29363027322020 @default.
- W2936302732 countsByYear W29363027322023 @default.
- W2936302732 crossrefType "journal-article" @default.
- W2936302732 hasAuthorship W2936302732A5031370575 @default.
- W2936302732 hasAuthorship W2936302732A5065593423 @default.
- W2936302732 hasConcept C105636585 @default.
- W2936302732 hasConcept C105795698 @default.
- W2936302732 hasConcept C119857082 @default.
- W2936302732 hasConcept C12267149 @default.
- W2936302732 hasConcept C148325268 @default.
- W2936302732 hasConcept C153180895 @default.
- W2936302732 hasConcept C154020017 @default.
- W2936302732 hasConcept C154945302 @default.
- W2936302732 hasConcept C2777212361 @default.
- W2936302732 hasConcept C2989005 @default.
- W2936302732 hasConcept C33923547 @default.
- W2936302732 hasConcept C41008148 @default.
- W2936302732 hasConcept C71924100 @default.
- W2936302732 hasConcept C75088862 @default.
- W2936302732 hasConcept C94124525 @default.
- W2936302732 hasConceptScore W2936302732C105636585 @default.
- W2936302732 hasConceptScore W2936302732C105795698 @default.
- W2936302732 hasConceptScore W2936302732C119857082 @default.
- W2936302732 hasConceptScore W2936302732C12267149 @default.
- W2936302732 hasConceptScore W2936302732C148325268 @default.
- W2936302732 hasConceptScore W2936302732C153180895 @default.
- W2936302732 hasConceptScore W2936302732C154020017 @default.
- W2936302732 hasConceptScore W2936302732C154945302 @default.
- W2936302732 hasConceptScore W2936302732C2777212361 @default.
- W2936302732 hasConceptScore W2936302732C2989005 @default.
- W2936302732 hasConceptScore W2936302732C33923547 @default.
- W2936302732 hasConceptScore W2936302732C41008148 @default.
- W2936302732 hasConceptScore W2936302732C71924100 @default.
- W2936302732 hasConceptScore W2936302732C75088862 @default.
- W2936302732 hasConceptScore W2936302732C94124525 @default.
- W2936302732 hasLocation W29363027321 @default.
- W2936302732 hasOpenAccess W2936302732 @default.
- W2936302732 hasPrimaryLocation W29363027321 @default.
- W2936302732 hasRelatedWork W2041399278 @default.
- W2936302732 hasRelatedWork W2056016498 @default.
- W2936302732 hasRelatedWork W2136184105 @default.
- W2936302732 hasRelatedWork W2160451891 @default.
- W2936302732 hasRelatedWork W2336974148 @default.
- W2936302732 hasRelatedWork W2389470892 @default.
- W2936302732 hasRelatedWork W3013515612 @default.
- W2936302732 hasRelatedWork W3195168932 @default.
- W2936302732 hasRelatedWork W2187500075 @default.
- W2936302732 hasRelatedWork W2345184372 @default.
- W2936302732 hasVolume "125" @default.
- W2936302732 isParatext "false" @default.
- W2936302732 isRetracted "false" @default.
- W2936302732 magId "2936302732" @default.
- W2936302732 workType "article" @default.