Matches in SemOpenAlex for { <https://semopenalex.org/work/W2936703070> ?p ?o ?g. }
- W2936703070 endingPage "888" @default.
- W2936703070 startingPage "888" @default.
- W2936703070 abstract "The growing population in China has led to an increasing importance of crop area (CA) protection. A powerful tool for acquiring accurate and up-to-date CA maps is automatic mapping using information extracted from high spatial resolution remote sensing (RS) images. RS image information extraction includes feature classification, which is a long-standing research issue in the RS community. Emerging deep learning techniques, such as the deep semantic segmentation network technique, are effective methods to automatically discover relevant contextual features and get better image classification results. In this study, we exploited deep semantic segmentation networks to classify and extract CA from high-resolution RS images. WorldView-2 (WV-2) images with only Red-Green-Blue (RGB) bands were used to confirm the effectiveness of the proposed semantic classification framework for information extraction and the CA mapping task. Specifically, we used the deep learning framework TensorFlow to construct a platform for sampling, training, testing, and classifying to extract and map CA on the basis of DeepLabv3+. By leveraging per-pixel and random sample point accuracy evaluation methods, we conclude that the proposed approach can efficiently obtain acceptable accuracy (Overall Accuracy = 95%, Kappa = 0.90) of CA classification in the study area, and the approach performs better than other deep semantic segmentation networks (U-Net/PspNet/SegNet/DeepLabv2) and traditional machine learning methods, such as Maximum Likelihood (ML), Support Vector Machine (SVM), and RF (Random Forest). Furthermore, the proposed approach is highly scalable for the variety of crop types in a crop area. Overall, the proposed approach can train a precise and effective model that is capable of adequately describing the small, irregular fields of smallholder agriculture and handling the great level of details in RGB high spatial resolution images." @default.
- W2936703070 created "2019-04-25" @default.
- W2936703070 creator A5007776175 @default.
- W2936703070 creator A5008008825 @default.
- W2936703070 creator A5078590075 @default.
- W2936703070 creator A5080044640 @default.
- W2936703070 date "2019-04-11" @default.
- W2936703070 modified "2023-10-12" @default.
- W2936703070 title "Smallholder Crop Area Mapped with a Semantic Segmentation Deep Learning Method" @default.
- W2936703070 cites W1967647680 @default.
- W2936703070 cites W1990809012 @default.
- W2936703070 cites W2006929658 @default.
- W2936703070 cites W2010806274 @default.
- W2936703070 cites W2013081398 @default.
- W2936703070 cites W2017555282 @default.
- W2936703070 cites W2029772080 @default.
- W2936703070 cites W2037227137 @default.
- W2936703070 cites W2042692910 @default.
- W2936703070 cites W2049633694 @default.
- W2936703070 cites W2066416082 @default.
- W2936703070 cites W2075368648 @default.
- W2936703070 cites W2075620729 @default.
- W2936703070 cites W2112796928 @default.
- W2936703070 cites W2115451191 @default.
- W2936703070 cites W2127227873 @default.
- W2936703070 cites W2127559745 @default.
- W2936703070 cites W2154789478 @default.
- W2936703070 cites W2179290474 @default.
- W2936703070 cites W2212980623 @default.
- W2936703070 cites W2262752710 @default.
- W2936703070 cites W2267317359 @default.
- W2936703070 cites W2273708466 @default.
- W2936703070 cites W2283002322 @default.
- W2936703070 cites W2291068538 @default.
- W2936703070 cites W2310141728 @default.
- W2936703070 cites W2341130385 @default.
- W2936703070 cites W2412782625 @default.
- W2936703070 cites W2512351403 @default.
- W2936703070 cites W2538244214 @default.
- W2936703070 cites W2551397753 @default.
- W2936703070 cites W2564730549 @default.
- W2936703070 cites W2592712793 @default.
- W2936703070 cites W2599500356 @default.
- W2936703070 cites W2609044008 @default.
- W2936703070 cites W2616755213 @default.
- W2936703070 cites W2621021710 @default.
- W2936703070 cites W2757208835 @default.
- W2936703070 cites W2758292020 @default.
- W2936703070 cites W2760340275 @default.
- W2936703070 cites W2767953525 @default.
- W2936703070 cites W2768035654 @default.
- W2936703070 cites W2768975974 @default.
- W2936703070 cites W2772452219 @default.
- W2936703070 cites W2781778455 @default.
- W2936703070 cites W2783608381 @default.
- W2936703070 cites W2787614951 @default.
- W2936703070 cites W2790796805 @default.
- W2936703070 cites W2801083736 @default.
- W2936703070 cites W2803867573 @default.
- W2936703070 cites W2810004461 @default.
- W2936703070 cites W2810030371 @default.
- W2936703070 cites W2814568980 @default.
- W2936703070 cites W2883026662 @default.
- W2936703070 cites W2888738931 @default.
- W2936703070 cites W2895924848 @default.
- W2936703070 cites W2899747753 @default.
- W2936703070 cites W2900217217 @default.
- W2936703070 cites W2900420505 @default.
- W2936703070 cites W2963995737 @default.
- W2936703070 cites W3105127913 @default.
- W2936703070 cites W4239510810 @default.
- W2936703070 doi "https://doi.org/10.3390/rs11070888" @default.
- W2936703070 hasPublicationYear "2019" @default.
- W2936703070 type Work @default.
- W2936703070 sameAs 2936703070 @default.
- W2936703070 citedByCount "58" @default.
- W2936703070 countsByYear W29367030702019 @default.
- W2936703070 countsByYear W29367030702020 @default.
- W2936703070 countsByYear W29367030702021 @default.
- W2936703070 countsByYear W29367030702022 @default.
- W2936703070 countsByYear W29367030702023 @default.
- W2936703070 crossrefType "journal-article" @default.
- W2936703070 hasAuthorship W2936703070A5007776175 @default.
- W2936703070 hasAuthorship W2936703070A5008008825 @default.
- W2936703070 hasAuthorship W2936703070A5078590075 @default.
- W2936703070 hasAuthorship W2936703070A5080044640 @default.
- W2936703070 hasBestOaLocation W29367030701 @default.
- W2936703070 hasConcept C108583219 @default.
- W2936703070 hasConcept C119857082 @default.
- W2936703070 hasConcept C12267149 @default.
- W2936703070 hasConcept C153180895 @default.
- W2936703070 hasConcept C154945302 @default.
- W2936703070 hasConcept C169258074 @default.
- W2936703070 hasConcept C41008148 @default.
- W2936703070 hasConcept C52622490 @default.
- W2936703070 hasConcept C82990744 @default.
- W2936703070 hasConcept C89600930 @default.
- W2936703070 hasConceptScore W2936703070C108583219 @default.