Matches in SemOpenAlex for { <https://semopenalex.org/work/W2936705729> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2936705729 abstract "Acute gastrointestinal bleeding (GIB) is a common medical emergency with 50-150 per 100,000 people admitted per year. Although 80 percent of GIB cases stop spontaneously, it is important to determine the source of bleeding and establish adiagnosis such that possible recurrences are prevented and that the most suitable management may be given in future episodes. In the emergency room, when a patient shows signs of hematemesis (vomiting of red blood), it is obvious that the patient has upper gastrointestinal bleeding. In the absence of hematemesis however,the source of bleeding remains unclear. While the diagnosis of GIB is best done by a gastroenterologist, it is not always feasible, due to scarcity of resources and time. A reliable classification model would be very helpful in diagnosing patients more efficiently and effectively targeting the scarce resources.Current review of the literature, did not reveal any model that predicts the source of GIB in the absence of hematemesis. This thesis uses a graphical modeling approach,specialcally Bayesian networks, to model the different outcomes of GIB. One key advantage of Bayesian network models in this context is their ability to predict the outcome with partial observations on variables or attributes. The four outcome variables predicted are: source of bleeding, need for urgent blood resuscitation,need for urgent endoscopy, and disposition. Performance of the models is assessed by classification or prediction accuracy, area under curves, sensitivity and specificity values. The Bayesian network models provide good accuracy for the prediction of the source of bleeding and need for urgent blood resuscitation but did not do well on predicting need for urgent endoscopy, and disposition. The models require further validation if they are to be used in clinical settings." @default.
- W2936705729 created "2019-04-25" @default.
- W2936705729 creator A5019223233 @default.
- W2936705729 date "2013-11-01" @default.
- W2936705729 modified "2023-09-23" @default.
- W2936705729 title "Bayesian network modeling of gastrointestinal bleeding" @default.
- W2936705729 hasPublicationYear "2013" @default.
- W2936705729 type Work @default.
- W2936705729 sameAs 2936705729 @default.
- W2936705729 citedByCount "0" @default.
- W2936705729 crossrefType "dissertation" @default.
- W2936705729 hasAuthorship W2936705729A5019223233 @default.
- W2936705729 hasConcept C119857082 @default.
- W2936705729 hasConcept C141071460 @default.
- W2936705729 hasConcept C151730666 @default.
- W2936705729 hasConcept C177713679 @default.
- W2936705729 hasConcept C2778080469 @default.
- W2936705729 hasConcept C2779343474 @default.
- W2936705729 hasConcept C33724603 @default.
- W2936705729 hasConcept C41008148 @default.
- W2936705729 hasConcept C71924100 @default.
- W2936705729 hasConcept C86803240 @default.
- W2936705729 hasConceptScore W2936705729C119857082 @default.
- W2936705729 hasConceptScore W2936705729C141071460 @default.
- W2936705729 hasConceptScore W2936705729C151730666 @default.
- W2936705729 hasConceptScore W2936705729C177713679 @default.
- W2936705729 hasConceptScore W2936705729C2778080469 @default.
- W2936705729 hasConceptScore W2936705729C2779343474 @default.
- W2936705729 hasConceptScore W2936705729C33724603 @default.
- W2936705729 hasConceptScore W2936705729C41008148 @default.
- W2936705729 hasConceptScore W2936705729C71924100 @default.
- W2936705729 hasConceptScore W2936705729C86803240 @default.
- W2936705729 hasLocation W29367057291 @default.
- W2936705729 hasOpenAccess W2936705729 @default.
- W2936705729 hasPrimaryLocation W29367057291 @default.
- W2936705729 hasRelatedWork W1887179812 @default.
- W2936705729 hasRelatedWork W1969522489 @default.
- W2936705729 hasRelatedWork W1990374687 @default.
- W2936705729 hasRelatedWork W2035808777 @default.
- W2936705729 hasRelatedWork W2057140084 @default.
- W2936705729 hasRelatedWork W2057445904 @default.
- W2936705729 hasRelatedWork W2086885473 @default.
- W2936705729 hasRelatedWork W2092525483 @default.
- W2936705729 hasRelatedWork W2256824604 @default.
- W2936705729 hasRelatedWork W2347957278 @default.
- W2936705729 hasRelatedWork W2409467065 @default.
- W2936705729 hasRelatedWork W2412589917 @default.
- W2936705729 hasRelatedWork W2418863296 @default.
- W2936705729 hasRelatedWork W2781806449 @default.
- W2936705729 hasRelatedWork W2805691397 @default.
- W2936705729 hasRelatedWork W3012320127 @default.
- W2936705729 hasRelatedWork W3026968826 @default.
- W2936705729 hasRelatedWork W3034111519 @default.
- W2936705729 hasRelatedWork W3125158737 @default.
- W2936705729 hasRelatedWork W2916484180 @default.
- W2936705729 isParatext "false" @default.
- W2936705729 isRetracted "false" @default.
- W2936705729 magId "2936705729" @default.
- W2936705729 workType "dissertation" @default.