Matches in SemOpenAlex for { <https://semopenalex.org/work/W2936762371> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2936762371 abstract "In this paper, we will provide an introduction to the derivative-free optimization algorithms which can be potentially applied to train deep learning models. Existing deep learning model training is mostly based on the back propagation algorithm, which updates the model variables layers by layers with the gradient descent algorithm or its variants. However, the objective functions of deep learning models to be optimized are usually non-convex and the gradient descent algorithms based on the first-order derivative can get stuck into the local optima very easily. To resolve such a problem, various local or global optimization algorithms have been proposed, which can help improve the training of deep learning models greatly. The representative examples include the Bayesian methods, Shubert-Piyavskii algorithm, Direct, LIPO, MCS, GA, SCE, DE, PSO, ES, CMA-ES, hill climbing and simulated annealing, etc. One part of these algorithms will be introduced in this paper (including the Bayesian method and Lipschitzian approaches, e.g., Shubert-Piyavskii algorithm, Direct, LIPO and MCS), and the remaining algorithms (including the population based optimization algorithms, e.g., GA, SCE, DE, PSO, ES and CMA-ES, and random search algorithms, e.g., hill climbing and simulated annealing) will be introduced in the follow-up paper [18] in detail." @default.
- W2936762371 created "2019-04-25" @default.
- W2936762371 creator A5091543149 @default.
- W2936762371 date "2019-04-19" @default.
- W2936762371 modified "2023-09-27" @default.
- W2936762371 title "Derivative-Free Global Optimization Algorithms: Bayesian Method and Lipschitzian Approaches" @default.
- W2936762371 cites W1481631336 @default.
- W2936762371 cites W1529817821 @default.
- W2936762371 cites W164706946 @default.
- W2936762371 cites W1668488459 @default.
- W2936762371 cites W1969513389 @default.
- W2936762371 cites W1978837378 @default.
- W2936762371 cites W2022072257 @default.
- W2936762371 cites W2026299065 @default.
- W2936762371 cites W2052725501 @default.
- W2936762371 cites W2061144551 @default.
- W2936762371 cites W2092611373 @default.
- W2936762371 cites W2099201756 @default.
- W2936762371 cites W2113741278 @default.
- W2936762371 cites W2129250732 @default.
- W2936762371 cites W2130788193 @default.
- W2936762371 cites W2131627640 @default.
- W2936762371 cites W2804816149 @default.
- W2936762371 cites W2921968712 @default.
- W2936762371 cites W2939052750 @default.
- W2936762371 cites W2963141751 @default.
- W2936762371 hasPublicationYear "2019" @default.
- W2936762371 type Work @default.
- W2936762371 sameAs 2936762371 @default.
- W2936762371 citedByCount "1" @default.
- W2936762371 countsByYear W29367623712019 @default.
- W2936762371 crossrefType "posted-content" @default.
- W2936762371 hasAuthorship W2936762371A5091543149 @default.
- W2936762371 hasConcept C11413529 @default.
- W2936762371 hasConcept C119857082 @default.
- W2936762371 hasConcept C126255220 @default.
- W2936762371 hasConcept C126980161 @default.
- W2936762371 hasConcept C135450995 @default.
- W2936762371 hasConcept C141934464 @default.
- W2936762371 hasConcept C153258448 @default.
- W2936762371 hasConcept C154945302 @default.
- W2936762371 hasConcept C164752517 @default.
- W2936762371 hasConcept C2778049539 @default.
- W2936762371 hasConcept C33923547 @default.
- W2936762371 hasConcept C41008148 @default.
- W2936762371 hasConcept C50644808 @default.
- W2936762371 hasConceptScore W2936762371C11413529 @default.
- W2936762371 hasConceptScore W2936762371C119857082 @default.
- W2936762371 hasConceptScore W2936762371C126255220 @default.
- W2936762371 hasConceptScore W2936762371C126980161 @default.
- W2936762371 hasConceptScore W2936762371C135450995 @default.
- W2936762371 hasConceptScore W2936762371C141934464 @default.
- W2936762371 hasConceptScore W2936762371C153258448 @default.
- W2936762371 hasConceptScore W2936762371C154945302 @default.
- W2936762371 hasConceptScore W2936762371C164752517 @default.
- W2936762371 hasConceptScore W2936762371C2778049539 @default.
- W2936762371 hasConceptScore W2936762371C33923547 @default.
- W2936762371 hasConceptScore W2936762371C41008148 @default.
- W2936762371 hasConceptScore W2936762371C50644808 @default.
- W2936762371 hasLocation W29367623711 @default.
- W2936762371 hasOpenAccess W2936762371 @default.
- W2936762371 hasPrimaryLocation W29367623711 @default.
- W2936762371 hasRelatedWork W102951243 @default.
- W2936762371 hasRelatedWork W1537607160 @default.
- W2936762371 hasRelatedWork W2024496818 @default.
- W2936762371 hasRelatedWork W2032200843 @default.
- W2936762371 hasRelatedWork W2068858441 @default.
- W2936762371 hasRelatedWork W2072180213 @default.
- W2936762371 hasRelatedWork W2145178363 @default.
- W2936762371 hasRelatedWork W2161601627 @default.
- W2936762371 hasRelatedWork W2166513470 @default.
- W2936762371 hasRelatedWork W2186006036 @default.
- W2936762371 hasRelatedWork W2268582187 @default.
- W2936762371 hasRelatedWork W2358931597 @default.
- W2936762371 hasRelatedWork W2751783631 @default.
- W2936762371 hasRelatedWork W2782624216 @default.
- W2936762371 hasRelatedWork W2791210778 @default.
- W2936762371 hasRelatedWork W2939052750 @default.
- W2936762371 hasRelatedWork W2972373936 @default.
- W2936762371 hasRelatedWork W3012112701 @default.
- W2936762371 hasRelatedWork W3172927853 @default.
- W2936762371 hasRelatedWork W2125377850 @default.
- W2936762371 isParatext "false" @default.
- W2936762371 isRetracted "false" @default.
- W2936762371 magId "2936762371" @default.
- W2936762371 workType "article" @default.