Matches in SemOpenAlex for { <https://semopenalex.org/work/W2936870844> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2936870844 abstract "Network traffic classification plays a fundamental role in area of network management and security. Recent days, machine learning techniques have been used to classify network traffic. In particular, semi-supervised learning is very fit for practical scenarios, where pre-labelled training flows are hard to obtain. In this paper, a semi-supervised classification scheme is proposed for network traffic classification by using deep generative models. Specifically, the feature extractor module aims to automatically find representation features of raw traffic data in a lower dimensional feature space. Subsequently, using these representation features, a separated classifier is trained by the semi-supervised classification module. The method is verified with three different levels of datasets: Anomaly detection-level, protocol-level and application-level. The results show that our scheme can not only detect malware traffic, but also classify the traffic according to their protocol, application, and attack types. Using less than 20% labelled flows of the whole dataset, we can achieve the accuracy of over 95% which is a satisfying value compared with supervised learning method." @default.
- W2936870844 created "2019-04-25" @default.
- W2936870844 creator A5007310440 @default.
- W2936870844 creator A5045720734 @default.
- W2936870844 creator A5076768386 @default.
- W2936870844 creator A5079016242 @default.
- W2936870844 creator A5081689932 @default.
- W2936870844 date "2018-07-01" @default.
- W2936870844 modified "2023-09-26" @default.
- W2936870844 title "Semi-supervised network traffic classification using deep generative models" @default.
- W2936870844 cites W1803485664 @default.
- W2936870844 cites W1973668864 @default.
- W2936870844 cites W2062401262 @default.
- W2936870844 cites W2096118443 @default.
- W2936870844 cites W2121973001 @default.
- W2936870844 cites W2138449377 @default.
- W2936870844 cites W2149274049 @default.
- W2936870844 cites W2399941526 @default.
- W2936870844 cites W2743678626 @default.
- W2936870844 cites W2771013472 @default.
- W2936870844 cites W2772317693 @default.
- W2936870844 cites W3003807236 @default.
- W2936870844 cites W4255738146 @default.
- W2936870844 doi "https://doi.org/10.1109/fskd.2018.8686880" @default.
- W2936870844 hasPublicationYear "2018" @default.
- W2936870844 type Work @default.
- W2936870844 sameAs 2936870844 @default.
- W2936870844 citedByCount "10" @default.
- W2936870844 countsByYear W29368708442020 @default.
- W2936870844 countsByYear W29368708442021 @default.
- W2936870844 countsByYear W29368708442022 @default.
- W2936870844 countsByYear W29368708442023 @default.
- W2936870844 crossrefType "proceedings-article" @default.
- W2936870844 hasAuthorship W2936870844A5007310440 @default.
- W2936870844 hasAuthorship W2936870844A5045720734 @default.
- W2936870844 hasAuthorship W2936870844A5076768386 @default.
- W2936870844 hasAuthorship W2936870844A5079016242 @default.
- W2936870844 hasAuthorship W2936870844A5081689932 @default.
- W2936870844 hasConcept C117978034 @default.
- W2936870844 hasConcept C119857082 @default.
- W2936870844 hasConcept C124101348 @default.
- W2936870844 hasConcept C127413603 @default.
- W2936870844 hasConcept C136389625 @default.
- W2936870844 hasConcept C153180895 @default.
- W2936870844 hasConcept C154945302 @default.
- W2936870844 hasConcept C169988225 @default.
- W2936870844 hasConcept C21880701 @default.
- W2936870844 hasConcept C31258907 @default.
- W2936870844 hasConcept C41008148 @default.
- W2936870844 hasConcept C50644808 @default.
- W2936870844 hasConcept C5119721 @default.
- W2936870844 hasConcept C52622490 @default.
- W2936870844 hasConcept C59404180 @default.
- W2936870844 hasConcept C739882 @default.
- W2936870844 hasConcept C95623464 @default.
- W2936870844 hasConceptScore W2936870844C117978034 @default.
- W2936870844 hasConceptScore W2936870844C119857082 @default.
- W2936870844 hasConceptScore W2936870844C124101348 @default.
- W2936870844 hasConceptScore W2936870844C127413603 @default.
- W2936870844 hasConceptScore W2936870844C136389625 @default.
- W2936870844 hasConceptScore W2936870844C153180895 @default.
- W2936870844 hasConceptScore W2936870844C154945302 @default.
- W2936870844 hasConceptScore W2936870844C169988225 @default.
- W2936870844 hasConceptScore W2936870844C21880701 @default.
- W2936870844 hasConceptScore W2936870844C31258907 @default.
- W2936870844 hasConceptScore W2936870844C41008148 @default.
- W2936870844 hasConceptScore W2936870844C50644808 @default.
- W2936870844 hasConceptScore W2936870844C5119721 @default.
- W2936870844 hasConceptScore W2936870844C52622490 @default.
- W2936870844 hasConceptScore W2936870844C59404180 @default.
- W2936870844 hasConceptScore W2936870844C739882 @default.
- W2936870844 hasConceptScore W2936870844C95623464 @default.
- W2936870844 hasLocation W29368708441 @default.
- W2936870844 hasOpenAccess W2936870844 @default.
- W2936870844 hasPrimaryLocation W29368708441 @default.
- W2936870844 hasRelatedWork W2022996092 @default.
- W2936870844 hasRelatedWork W2188464267 @default.
- W2936870844 hasRelatedWork W2592385986 @default.
- W2936870844 hasRelatedWork W2695951553 @default.
- W2936870844 hasRelatedWork W2784352036 @default.
- W2936870844 hasRelatedWork W2807311372 @default.
- W2936870844 hasRelatedWork W2899683012 @default.
- W2936870844 hasRelatedWork W2905846897 @default.
- W2936870844 hasRelatedWork W2995914718 @default.
- W2936870844 hasRelatedWork W4367598285 @default.
- W2936870844 isParatext "false" @default.
- W2936870844 isRetracted "false" @default.
- W2936870844 magId "2936870844" @default.
- W2936870844 workType "article" @default.