Matches in SemOpenAlex for { <https://semopenalex.org/work/W2936895602> ?p ?o ?g. }
- W2936895602 endingPage "2481" @default.
- W2936895602 startingPage "2469" @default.
- W2936895602 abstract "Computed tomography (CT) is widely used in medical diagnosis and non-destructive detection. Image reconstruction in CT aims to accurately recover pixel values from measured line integrals, i.e., the summed pixel values along straight lines. Provided that the acquired data satisfy the data sufficiency condition as well as other conditions regarding the view angle sampling interval and the severity of transverse data truncation, researchers have discovered many solutions to accurately reconstruct the image. However, if these conditions are violated, accurate image reconstruction from line integrals remains an intellectual challenge. In this paper, a deep learning method with a common network architecture, termed iCT-Net, was developed and trained to accurately reconstruct images for previously solved and unsolved CT reconstruction problems with high quantitative accuracy. Particularly, accurate reconstructions were achieved for the case when the sparse view reconstruction problem (i.e., compressed sensing problem) is entangled with the classical interior tomographic problems." @default.
- W2936895602 created "2019-04-25" @default.
- W2936895602 creator A5006071922 @default.
- W2936895602 creator A5017100408 @default.
- W2936895602 creator A5038165514 @default.
- W2936895602 creator A5042252659 @default.
- W2936895602 creator A5087063423 @default.
- W2936895602 date "2019-10-01" @default.
- W2936895602 modified "2023-10-12" @default.
- W2936895602 title "Learning to Reconstruct Computed Tomography Images Directly From Sinogram Data Under A Variety of Data Acquisition Conditions" @default.
- W2936895602 cites W1494192115 @default.
- W2936895602 cites W1653517664 @default.
- W2936895602 cites W1901616594 @default.
- W2936895602 cites W1970556575 @default.
- W2936895602 cites W1997549538 @default.
- W2936895602 cites W1999493577 @default.
- W2936895602 cites W2024903386 @default.
- W2936895602 cites W2031572482 @default.
- W2936895602 cites W2043010645 @default.
- W2936895602 cites W2046809459 @default.
- W2936895602 cites W2055483062 @default.
- W2936895602 cites W2065390928 @default.
- W2936895602 cites W2076063813 @default.
- W2936895602 cites W2079199784 @default.
- W2936895602 cites W2082737320 @default.
- W2936895602 cites W2082854348 @default.
- W2936895602 cites W2089441731 @default.
- W2936895602 cites W2099810224 @default.
- W2936895602 cites W2145096794 @default.
- W2936895602 cites W2145339207 @default.
- W2936895602 cites W2165565866 @default.
- W2936895602 cites W2257979135 @default.
- W2936895602 cites W2408222661 @default.
- W2936895602 cites W2531147647 @default.
- W2936895602 cites W2574952845 @default.
- W2936895602 cites W2584483805 @default.
- W2936895602 cites W2611467245 @default.
- W2936895602 cites W2617128058 @default.
- W2936895602 cites W2743780012 @default.
- W2936895602 cites W2747592475 @default.
- W2936895602 cites W2748739903 @default.
- W2936895602 cites W2753044865 @default.
- W2936895602 cites W2754956769 @default.
- W2936895602 cites W2759197712 @default.
- W2936895602 cites W2766447205 @default.
- W2936895602 cites W2784480683 @default.
- W2936895602 cites W2790308029 @default.
- W2936895602 cites W2793419304 @default.
- W2936895602 cites W2795777276 @default.
- W2936895602 cites W2796256498 @default.
- W2936895602 cites W2800924046 @default.
- W2936895602 cites W2802168062 @default.
- W2936895602 cites W2803086176 @default.
- W2936895602 cites W2803224943 @default.
- W2936895602 cites W2887746098 @default.
- W2936895602 cites W2919115771 @default.
- W2936895602 cites W2963392702 @default.
- W2936895602 cites W2963754379 @default.
- W2936895602 cites W2964327615 @default.
- W2936895602 cites W3103261259 @default.
- W2936895602 cites W3103372211 @default.
- W2936895602 cites W3103528285 @default.
- W2936895602 cites W3103586216 @default.
- W2936895602 cites W3104324122 @default.
- W2936895602 cites W4212806269 @default.
- W2936895602 cites W4250955649 @default.
- W2936895602 cites W4298264214 @default.
- W2936895602 doi "https://doi.org/10.1109/tmi.2019.2910760" @default.
- W2936895602 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7962902" @default.
- W2936895602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30990179" @default.
- W2936895602 hasPublicationYear "2019" @default.
- W2936895602 type Work @default.
- W2936895602 sameAs 2936895602 @default.
- W2936895602 citedByCount "101" @default.
- W2936895602 countsByYear W29368956022019 @default.
- W2936895602 countsByYear W29368956022020 @default.
- W2936895602 countsByYear W29368956022021 @default.
- W2936895602 countsByYear W29368956022022 @default.
- W2936895602 countsByYear W29368956022023 @default.
- W2936895602 crossrefType "journal-article" @default.
- W2936895602 hasAuthorship W2936895602A5006071922 @default.
- W2936895602 hasAuthorship W2936895602A5017100408 @default.
- W2936895602 hasAuthorship W2936895602A5038165514 @default.
- W2936895602 hasAuthorship W2936895602A5042252659 @default.
- W2936895602 hasAuthorship W2936895602A5087063423 @default.
- W2936895602 hasBestOaLocation W29368956021 @default.
- W2936895602 hasConcept C111919701 @default.
- W2936895602 hasConcept C116321358 @default.
- W2936895602 hasConcept C126838900 @default.
- W2936895602 hasConcept C136197465 @default.
- W2936895602 hasConcept C141379421 @default.
- W2936895602 hasConcept C154945302 @default.
- W2936895602 hasConcept C163716698 @default.
- W2936895602 hasConcept C163985040 @default.
- W2936895602 hasConcept C19527891 @default.
- W2936895602 hasConcept C31601959 @default.
- W2936895602 hasConcept C31972630 @default.
- W2936895602 hasConcept C41008148 @default.