Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937159063> ?p ?o ?g. }
- W2937159063 abstract "Direct measurements of deuterium main-ion toroidal rotation spanning the linear ohmic to saturated ohmic confinement (LOC-SOC) regime and with additional electron cyclotron heating (ECH) are presented and compared with the more commonly measured impurity (carbon) ion rotation in DIII-D. Main ions carry the bulk of the plasma toroidal momentum, and hence, the shape of the main-ion rotation is more relevant to the study of angular momentum transport in tokamaks. Both in the LOC regime and with ECH, the main-ion toroidal rotation frequency is flat across the profile from the sawtooth region to the plasma separatrix. However, the impurity rotation profile possesses a rotation gradient, with the rotation frequency being lower near the plasma edge, implying a momentum pinch or negative residual stress inferred from the impurity rotation that differs from the main-ion rotation. In the SOC regime, both the main-ion and impurity rotation profiles develop a deeply hollow feature near the midradius while maintaining the offset in the edge rotation, both implying a positive core residual stress. In the radial region where the rotation gradient changes most dramatically, turbulence measurements show that density fluctuations near the trapped electron mode (TEM) scale are higher when the rotation profile is flat and drop significantly when the plasma density is raised and the rotation profile hollows, consistent with instabilities damped by collisions. Linear initial value gyrokinetic simulations with GYRO indicate that the transition from LOC-SOC in DIII-D occurs as TEMs are replaced by ion temperature gradient (ITG) driven modes from the outer radii inwards as the plasma collisionality increases, Zeff decreases, and the power flow through the ion channel progressively increases due to the electron-ion energy exchange. Gyrofluid modeling with trap gyro-Landau fluid (TGLF) successfully reproduces the plasma profiles at key times in the discharge and in time dependent simulations with predictive TRANSP. TGLF indicates that in the LOC and SOC regimes as well as with ECH, subdominant modes are present and that the plasma is not in a pure TEM or ITG binary state, but rather a more subtle mixed state. Predictions of the main-ion rotation profiles are performed with global nonlinear gyrokinetic simulations using GTS and reveal that the flat rotation is due to oscillatory variation of the turbulent residual stress across the profile, whereas the deeply hollow rotation profile is due to a larger-scale, dipole-like stress profile. In these cases, the predicted and observed main-ion rotation profile is consistent with the balance of turbulent residual stress and momentum diffusion." @default.
- W2937159063 created "2019-04-25" @default.
- W2937159063 creator A5003027354 @default.
- W2937159063 creator A5003353392 @default.
- W2937159063 creator A5013250694 @default.
- W2937159063 creator A5021476546 @default.
- W2937159063 creator A5022924950 @default.
- W2937159063 creator A5035059030 @default.
- W2937159063 creator A5038246914 @default.
- W2937159063 creator A5062698089 @default.
- W2937159063 creator A5063142899 @default.
- W2937159063 creator A5070550204 @default.
- W2937159063 creator A5090600476 @default.
- W2937159063 date "2019-04-01" @default.
- W2937159063 modified "2023-10-14" @default.
- W2937159063 title "Main-ion intrinsic toroidal rotation across the ITG/TEM boundary in DIII-D discharges during ohmic and electron cyclotron heating" @default.
- W2937159063 cites W1547764997 @default.
- W2937159063 cites W1964344518 @default.
- W2937159063 cites W1966625203 @default.
- W2937159063 cites W1967564813 @default.
- W2937159063 cites W1976494109 @default.
- W2937159063 cites W1978067581 @default.
- W2937159063 cites W1991717383 @default.
- W2937159063 cites W2002263767 @default.
- W2937159063 cites W2003777246 @default.
- W2937159063 cites W2013180834 @default.
- W2937159063 cites W2015658601 @default.
- W2937159063 cites W2015676726 @default.
- W2937159063 cites W2027663903 @default.
- W2937159063 cites W2032498212 @default.
- W2937159063 cites W2035746142 @default.
- W2937159063 cites W2041274986 @default.
- W2937159063 cites W2041777756 @default.
- W2937159063 cites W2047144968 @default.
- W2937159063 cites W2049187268 @default.
- W2937159063 cites W2050616546 @default.
- W2937159063 cites W2051430422 @default.
- W2937159063 cites W2051680085 @default.
- W2937159063 cites W2053823178 @default.
- W2937159063 cites W2061342311 @default.
- W2937159063 cites W2061591280 @default.
- W2937159063 cites W2063155955 @default.
- W2937159063 cites W2068710519 @default.
- W2937159063 cites W2069018970 @default.
- W2937159063 cites W2070362127 @default.
- W2937159063 cites W2073566450 @default.
- W2937159063 cites W2078813932 @default.
- W2937159063 cites W2080502438 @default.
- W2937159063 cites W2083575201 @default.
- W2937159063 cites W2085814636 @default.
- W2937159063 cites W2088917557 @default.
- W2937159063 cites W2103775608 @default.
- W2937159063 cites W2113841869 @default.
- W2937159063 cites W2117859624 @default.
- W2937159063 cites W2120923386 @default.
- W2937159063 cites W2130879942 @default.
- W2937159063 cites W2144706411 @default.
- W2937159063 cites W2163390084 @default.
- W2937159063 cites W2171043864 @default.
- W2937159063 cites W2241427245 @default.
- W2937159063 cites W2338284575 @default.
- W2937159063 cites W2470067655 @default.
- W2937159063 cites W2519816170 @default.
- W2937159063 cites W2522016295 @default.
- W2937159063 cites W2525680749 @default.
- W2937159063 cites W2561428100 @default.
- W2937159063 cites W2570015107 @default.
- W2937159063 cites W2599434139 @default.
- W2937159063 cites W2600099912 @default.
- W2937159063 cites W2605520571 @default.
- W2937159063 cites W2742184833 @default.
- W2937159063 cites W2754995804 @default.
- W2937159063 cites W2758233490 @default.
- W2937159063 cites W2770537281 @default.
- W2937159063 cites W2776600416 @default.
- W2937159063 cites W2790428243 @default.
- W2937159063 cites W2805045097 @default.
- W2937159063 cites W2887607923 @default.
- W2937159063 cites W2994846188 @default.
- W2937159063 cites W3099985215 @default.
- W2937159063 cites W3100766884 @default.
- W2937159063 cites W4229793109 @default.
- W2937159063 doi "https://doi.org/10.1063/1.5090505" @default.
- W2937159063 hasPublicationYear "2019" @default.
- W2937159063 type Work @default.
- W2937159063 sameAs 2937159063 @default.
- W2937159063 citedByCount "22" @default.
- W2937159063 countsByYear W29371590632019 @default.
- W2937159063 countsByYear W29371590632020 @default.
- W2937159063 countsByYear W29371590632021 @default.
- W2937159063 countsByYear W29371590632022 @default.
- W2937159063 countsByYear W29371590632023 @default.
- W2937159063 crossrefType "journal-article" @default.
- W2937159063 hasAuthorship W2937159063A5003027354 @default.
- W2937159063 hasAuthorship W2937159063A5003353392 @default.
- W2937159063 hasAuthorship W2937159063A5013250694 @default.
- W2937159063 hasAuthorship W2937159063A5021476546 @default.
- W2937159063 hasAuthorship W2937159063A5022924950 @default.
- W2937159063 hasAuthorship W2937159063A5035059030 @default.
- W2937159063 hasAuthorship W2937159063A5038246914 @default.