Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937246112> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2937246112 endingPage "012075" @default.
- W2937246112 startingPage "012075" @default.
- W2937246112 abstract "An unicyclic graph is a graph which contains exactly one cycle. For k–ordered set W = {s1, s2, . . ., sk} of vertex set G, the multiset representation of a vertex v of G with respect to W is rm(v|W ) = {d(v, s1), d(v, s2), . . ., d(v, sk)} where d(v, si) is a distance between the vertex v and the vertices in W together with their multiplication. The resolving set W is called local resolving set of graph G if rm(v|W) ≠ rm(u|W ) for every pair u, v of adjacent vertices of G. The minimum local resolving set W is a local multiset basis of G. If G has a local multiset basis, then its cardinality is called local multiset dimension, denoted by μl(G). If G does not contain a local resolving set, then we write μl(G) = ∞. In this paper, we investigate and characterize the local multiset of some unicyclic graphs." @default.
- W2937246112 created "2019-04-25" @default.
- W2937246112 creator A5012864809 @default.
- W2937246112 creator A5013391703 @default.
- W2937246112 creator A5024991751 @default.
- W2937246112 creator A5064868833 @default.
- W2937246112 creator A5065039596 @default.
- W2937246112 creator A5082414775 @default.
- W2937246112 date "2019-04-09" @default.
- W2937246112 modified "2023-09-25" @default.
- W2937246112 title "The local multiset dimension of unicyclic graph" @default.
- W2937246112 cites W2138978865 @default.
- W2937246112 cites W2770063183 @default.
- W2937246112 doi "https://doi.org/10.1088/1755-1315/243/1/012075" @default.
- W2937246112 hasPublicationYear "2019" @default.
- W2937246112 type Work @default.
- W2937246112 sameAs 2937246112 @default.
- W2937246112 citedByCount "2" @default.
- W2937246112 countsByYear W29372461122023 @default.
- W2937246112 crossrefType "journal-article" @default.
- W2937246112 hasAuthorship W2937246112A5012864809 @default.
- W2937246112 hasAuthorship W2937246112A5013391703 @default.
- W2937246112 hasAuthorship W2937246112A5024991751 @default.
- W2937246112 hasAuthorship W2937246112A5064868833 @default.
- W2937246112 hasAuthorship W2937246112A5065039596 @default.
- W2937246112 hasAuthorship W2937246112A5082414775 @default.
- W2937246112 hasBestOaLocation W29372461121 @default.
- W2937246112 hasConcept C114614502 @default.
- W2937246112 hasConcept C118615104 @default.
- W2937246112 hasConcept C132525143 @default.
- W2937246112 hasConcept C2779623528 @default.
- W2937246112 hasConcept C33676613 @default.
- W2937246112 hasConcept C33923547 @default.
- W2937246112 hasConcept C80899671 @default.
- W2937246112 hasConceptScore W2937246112C114614502 @default.
- W2937246112 hasConceptScore W2937246112C118615104 @default.
- W2937246112 hasConceptScore W2937246112C132525143 @default.
- W2937246112 hasConceptScore W2937246112C2779623528 @default.
- W2937246112 hasConceptScore W2937246112C33676613 @default.
- W2937246112 hasConceptScore W2937246112C33923547 @default.
- W2937246112 hasConceptScore W2937246112C80899671 @default.
- W2937246112 hasLocation W29372461121 @default.
- W2937246112 hasOpenAccess W2937246112 @default.
- W2937246112 hasPrimaryLocation W29372461121 @default.
- W2937246112 hasRelatedWork W1719252778 @default.
- W2937246112 hasRelatedWork W2008276241 @default.
- W2937246112 hasRelatedWork W2169820283 @default.
- W2937246112 hasRelatedWork W2374778222 @default.
- W2937246112 hasRelatedWork W2555545330 @default.
- W2937246112 hasRelatedWork W2614056014 @default.
- W2937246112 hasRelatedWork W2966988768 @default.
- W2937246112 hasRelatedWork W30750922 @default.
- W2937246112 hasRelatedWork W4288261659 @default.
- W2937246112 hasRelatedWork W922283457 @default.
- W2937246112 hasVolume "243" @default.
- W2937246112 isParatext "false" @default.
- W2937246112 isRetracted "false" @default.
- W2937246112 magId "2937246112" @default.
- W2937246112 workType "article" @default.