Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937261546> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2937261546 endingPage "1795" @default.
- W2937261546 startingPage "1795" @default.
- W2937261546 abstract "Semantic segmentation and depth estimation are two important tasks in computer vision, and many methods have been developed to tackle them. Commonly these two tasks are addressed independently, but recently the idea of merging these two problems into a sole framework has been studied under the assumption that integrating two highly correlated tasks may benefit each other to improve the estimation accuracy. In this paper, depth estimation and semantic segmentation are jointly addressed using a single RGB input image under a unified convolutional neural network. We analyze two different architectures to evaluate which features are more relevant when shared by the two tasks and which features should be kept separated to achieve a mutual improvement. Likewise, our approaches are evaluated under two different scenarios designed to review our results versus single-task and multi-task methods. Qualitative and quantitative experiments demonstrate that the performance of our methodology outperforms the state of the art on single-task approaches, while obtaining competitive results compared with other multi-task methods." @default.
- W2937261546 created "2019-04-25" @default.
- W2937261546 creator A5016194141 @default.
- W2937261546 creator A5027466071 @default.
- W2937261546 creator A5079005201 @default.
- W2937261546 creator A5083014172 @default.
- W2937261546 date "2019-04-15" @default.
- W2937261546 modified "2023-09-27" @default.
- W2937261546 title "Depth Estimation and Semantic Segmentation from a Single RGB Image Using a Hybrid Convolutional Neural Network" @default.
- W2937261546 cites W1752885120 @default.
- W2937261546 cites W2109040335 @default.
- W2937261546 cites W2155033583 @default.
- W2937261546 cites W2165661463 @default.
- W2937261546 cites W2171943915 @default.
- W2937261546 cites W2412782625 @default.
- W2937261546 cites W2585293115 @default.
- W2937261546 cites W2606324882 @default.
- W2937261546 cites W2791359027 @default.
- W2937261546 cites W2963881378 @default.
- W2937261546 doi "https://doi.org/10.3390/s19081795" @default.
- W2937261546 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6514714" @default.
- W2937261546 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30991663" @default.
- W2937261546 hasPublicationYear "2019" @default.
- W2937261546 type Work @default.
- W2937261546 sameAs 2937261546 @default.
- W2937261546 citedByCount "24" @default.
- W2937261546 countsByYear W29372615462019 @default.
- W2937261546 countsByYear W29372615462020 @default.
- W2937261546 countsByYear W29372615462021 @default.
- W2937261546 countsByYear W29372615462022 @default.
- W2937261546 countsByYear W29372615462023 @default.
- W2937261546 crossrefType "journal-article" @default.
- W2937261546 hasAuthorship W2937261546A5016194141 @default.
- W2937261546 hasAuthorship W2937261546A5027466071 @default.
- W2937261546 hasAuthorship W2937261546A5079005201 @default.
- W2937261546 hasAuthorship W2937261546A5083014172 @default.
- W2937261546 hasBestOaLocation W29372615461 @default.
- W2937261546 hasConcept C115961682 @default.
- W2937261546 hasConcept C119857082 @default.
- W2937261546 hasConcept C153180895 @default.
- W2937261546 hasConcept C154945302 @default.
- W2937261546 hasConcept C162324750 @default.
- W2937261546 hasConcept C187736073 @default.
- W2937261546 hasConcept C2780451532 @default.
- W2937261546 hasConcept C31972630 @default.
- W2937261546 hasConcept C41008148 @default.
- W2937261546 hasConcept C50644808 @default.
- W2937261546 hasConcept C52102323 @default.
- W2937261546 hasConcept C81363708 @default.
- W2937261546 hasConcept C82990744 @default.
- W2937261546 hasConcept C89600930 @default.
- W2937261546 hasConcept C96250715 @default.
- W2937261546 hasConceptScore W2937261546C115961682 @default.
- W2937261546 hasConceptScore W2937261546C119857082 @default.
- W2937261546 hasConceptScore W2937261546C153180895 @default.
- W2937261546 hasConceptScore W2937261546C154945302 @default.
- W2937261546 hasConceptScore W2937261546C162324750 @default.
- W2937261546 hasConceptScore W2937261546C187736073 @default.
- W2937261546 hasConceptScore W2937261546C2780451532 @default.
- W2937261546 hasConceptScore W2937261546C31972630 @default.
- W2937261546 hasConceptScore W2937261546C41008148 @default.
- W2937261546 hasConceptScore W2937261546C50644808 @default.
- W2937261546 hasConceptScore W2937261546C52102323 @default.
- W2937261546 hasConceptScore W2937261546C81363708 @default.
- W2937261546 hasConceptScore W2937261546C82990744 @default.
- W2937261546 hasConceptScore W2937261546C89600930 @default.
- W2937261546 hasConceptScore W2937261546C96250715 @default.
- W2937261546 hasIssue "8" @default.
- W2937261546 hasLocation W29372615461 @default.
- W2937261546 hasLocation W29372615462 @default.
- W2937261546 hasLocation W29372615463 @default.
- W2937261546 hasLocation W29372615464 @default.
- W2937261546 hasLocation W29372615465 @default.
- W2937261546 hasLocation W29372615466 @default.
- W2937261546 hasOpenAccess W2937261546 @default.
- W2937261546 hasPrimaryLocation W29372615461 @default.
- W2937261546 hasRelatedWork W2223719734 @default.
- W2937261546 hasRelatedWork W2295870746 @default.
- W2937261546 hasRelatedWork W2822883015 @default.
- W2937261546 hasRelatedWork W2900273708 @default.
- W2937261546 hasRelatedWork W2954208830 @default.
- W2937261546 hasRelatedWork W2956571887 @default.
- W2937261546 hasRelatedWork W2997897143 @default.
- W2937261546 hasRelatedWork W3102636071 @default.
- W2937261546 hasRelatedWork W4200151779 @default.
- W2937261546 hasRelatedWork W4386085515 @default.
- W2937261546 hasVolume "19" @default.
- W2937261546 isParatext "false" @default.
- W2937261546 isRetracted "false" @default.
- W2937261546 magId "2937261546" @default.
- W2937261546 workType "article" @default.