Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937308919> ?p ?o ?g. }
- W2937308919 abstract "Mid-price movement prediction based on limit order book (LOB) data is a challenging task due to the complexity and dynamics of the LOB. So far, there have been very limited attempts for extracting relevant features based on LOB data. In this paper, we address this problem by designing a new set of handcrafted features and performing an extensive experimental evaluation on both liquid and illiquid stocks. More specifically, we implement a new set of econometrical features that capture statistical properties of the underlying securities for the task of mid-price prediction. Moreover, we develop a new experimental protocol for online learning that treats the task as a multi-objective optimization problem and predicts i) the direction of the next price movement and ii) the number of order book events that occur until the change takes place. In order to predict the mid-price movement, the features are fed into nine different deep learning models based on multi-layer perceptrons (MLP), convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks. The performance of the proposed method is then evaluated on liquid and illiquid stocks, which are based on TotalView-ITCH US and Nordic stocks, respectively. For some stocks, results suggest that the correct choice of a feature set and a model can lead to the successful prediction of how long it takes to have a stock price movement." @default.
- W2937308919 created "2019-04-25" @default.
- W2937308919 creator A5005099415 @default.
- W2937308919 creator A5011020765 @default.
- W2937308919 creator A5020091955 @default.
- W2937308919 creator A5046496769 @default.
- W2937308919 creator A5049372872 @default.
- W2937308919 date "2019-04-10" @default.
- W2937308919 modified "2023-09-27" @default.
- W2937308919 title "Feature Engineering for Mid-Price Prediction with Deep Learning" @default.
- W2937308919 cites W1505330957 @default.
- W2937308919 cites W1554663460 @default.
- W2937308919 cites W1815264562 @default.
- W2937308919 cites W1853291804 @default.
- W2937308919 cites W1994281962 @default.
- W2937308919 cites W2003413166 @default.
- W2937308919 cites W2039112760 @default.
- W2937308919 cites W2051235503 @default.
- W2937308919 cites W2053757129 @default.
- W2937308919 cites W2064675550 @default.
- W2937308919 cites W2068138154 @default.
- W2937308919 cites W2070473414 @default.
- W2937308919 cites W2075948878 @default.
- W2937308919 cites W2096566523 @default.
- W2937308919 cites W2107071461 @default.
- W2937308919 cites W2109596131 @default.
- W2937308919 cites W2113979458 @default.
- W2937308919 cites W2128569377 @default.
- W2937308919 cites W2136215272 @default.
- W2937308919 cites W2140585983 @default.
- W2937308919 cites W2157296221 @default.
- W2937308919 cites W2319270064 @default.
- W2937308919 cites W2335134956 @default.
- W2937308919 cites W2340183428 @default.
- W2937308919 cites W2506203101 @default.
- W2937308919 cites W2517194566 @default.
- W2937308919 cites W2557283755 @default.
- W2937308919 cites W2606358496 @default.
- W2937308919 cites W2623285721 @default.
- W2937308919 cites W2749587125 @default.
- W2937308919 cites W2766355270 @default.
- W2937308919 cites W2767299446 @default.
- W2937308919 cites W2770782851 @default.
- W2937308919 cites W2785770483 @default.
- W2937308919 cites W2791884409 @default.
- W2937308919 cites W2883692332 @default.
- W2937308919 cites W2883722872 @default.
- W2937308919 cites W2885054548 @default.
- W2937308919 cites W2885115970 @default.
- W2937308919 cites W2891929938 @default.
- W2937308919 cites W2896102935 @default.
- W2937308919 cites W2903382683 @default.
- W2937308919 cites W2903922715 @default.
- W2937308919 cites W2949948078 @default.
- W2937308919 cites W2952419406 @default.
- W2937308919 cites W2962833798 @default.
- W2937308919 cites W3105291792 @default.
- W2937308919 cites W3105448877 @default.
- W2937308919 cites W3121532596 @default.
- W2937308919 cites W3121790069 @default.
- W2937308919 cites W3121962320 @default.
- W2937308919 cites W3124429837 @default.
- W2937308919 cites W3124496508 @default.
- W2937308919 cites W3126064560 @default.
- W2937308919 cites W3139716244 @default.
- W2937308919 hasPublicationYear "2019" @default.
- W2937308919 type Work @default.
- W2937308919 sameAs 2937308919 @default.
- W2937308919 citedByCount "1" @default.
- W2937308919 countsByYear W29373089192020 @default.
- W2937308919 crossrefType "posted-content" @default.
- W2937308919 hasAuthorship W2937308919A5005099415 @default.
- W2937308919 hasAuthorship W2937308919A5011020765 @default.
- W2937308919 hasAuthorship W2937308919A5020091955 @default.
- W2937308919 hasAuthorship W2937308919A5046496769 @default.
- W2937308919 hasAuthorship W2937308919A5049372872 @default.
- W2937308919 hasConcept C108583219 @default.
- W2937308919 hasConcept C119857082 @default.
- W2937308919 hasConcept C138885662 @default.
- W2937308919 hasConcept C154945302 @default.
- W2937308919 hasConcept C162324750 @default.
- W2937308919 hasConcept C177264268 @default.
- W2937308919 hasConcept C187736073 @default.
- W2937308919 hasConcept C199360897 @default.
- W2937308919 hasConcept C2776401178 @default.
- W2937308919 hasConcept C2778827112 @default.
- W2937308919 hasConcept C2780451532 @default.
- W2937308919 hasConcept C41008148 @default.
- W2937308919 hasConcept C41895202 @default.
- W2937308919 hasConcept C50644808 @default.
- W2937308919 hasConcept C60908668 @default.
- W2937308919 hasConcept C81363708 @default.
- W2937308919 hasConceptScore W2937308919C108583219 @default.
- W2937308919 hasConceptScore W2937308919C119857082 @default.
- W2937308919 hasConceptScore W2937308919C138885662 @default.
- W2937308919 hasConceptScore W2937308919C154945302 @default.
- W2937308919 hasConceptScore W2937308919C162324750 @default.
- W2937308919 hasConceptScore W2937308919C177264268 @default.
- W2937308919 hasConceptScore W2937308919C187736073 @default.
- W2937308919 hasConceptScore W2937308919C199360897 @default.