Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937375783> ?p ?o ?g. }
- W2937375783 endingPage "231" @default.
- W2937375783 startingPage "212" @default.
- W2937375783 abstract "Abstract In many application areas, prediction rules trained based on high-dimensional data are subsequently applied to make predictions for observations from other sources, but they do not always perform well in this setting. This is because data sets from different sources can feature (slightly) differing distributions, even if they come from similar populations. In the context of high-dimensional data and beyond, most prediction methods involve one or several tuning parameters. Their values are commonly chosen by maximizing the cross-validated prediction performance on the training data. This procedure, however, implicitly presumes that the data to which the prediction rule will be ultimately applied, follow the same distribution as the training data. If this is not the case, less complex prediction rules that slightly underfit the training data may be preferable. Indeed, a tuning parameter does not only control the degree of adjustment of a prediction rule to the training data, but also, more generally, the degree of adjustment to the distribution of the training data. On the basis of this idea, in this paper we compare various approaches including new procedures for choosing tuning parameter values that lead to better generalizing prediction rules than those obtained based on cross-validation. Most of these approaches use an external validation data set. In our extensive comparison study based on a large collection of 15 transcriptomic data sets, tuning on external data and robust tuning with a tuned robustness parameter are the two approaches leading to better generalizing prediction rules." @default.
- W2937375783 created "2019-04-25" @default.
- W2937375783 creator A5010487429 @default.
- W2937375783 creator A5048970390 @default.
- W2937375783 creator A5050705404 @default.
- W2937375783 creator A5069072700 @default.
- W2937375783 creator A5074580850 @default.
- W2937375783 date "2020-07-06" @default.
- W2937375783 modified "2023-10-06" @default.
- W2937375783 title "Improved Outcome Prediction Across Data Sources Through Robust Parameter Tuning" @default.
- W2937375783 cites W154377515 @default.
- W2937375783 cites W2059115408 @default.
- W2937375783 cites W2084164487 @default.
- W2937375783 cites W2088883866 @default.
- W2937375783 cites W2095987352 @default.
- W2937375783 cites W2096192437 @default.
- W2937375783 cites W2096561439 @default.
- W2937375783 cites W2110925561 @default.
- W2937375783 cites W2141007997 @default.
- W2937375783 cites W2141009231 @default.
- W2937375783 cites W2158001550 @default.
- W2937375783 cites W2179438025 @default.
- W2937375783 cites W2467497157 @default.
- W2937375783 cites W2475326882 @default.
- W2937375783 cites W2506717766 @default.
- W2937375783 cites W2603756957 @default.
- W2937375783 cites W2736529787 @default.
- W2937375783 cites W2891479958 @default.
- W2937375783 cites W2911964244 @default.
- W2937375783 cites W2949244194 @default.
- W2937375783 cites W2949411928 @default.
- W2937375783 cites W3102027041 @default.
- W2937375783 cites W4234698323 @default.
- W2937375783 cites W4294541781 @default.
- W2937375783 doi "https://doi.org/10.1007/s00357-020-09368-z" @default.
- W2937375783 hasPublicationYear "2020" @default.
- W2937375783 type Work @default.
- W2937375783 sameAs 2937375783 @default.
- W2937375783 citedByCount "2" @default.
- W2937375783 countsByYear W29373757832020 @default.
- W2937375783 countsByYear W29373757832023 @default.
- W2937375783 crossrefType "journal-article" @default.
- W2937375783 hasAuthorship W2937375783A5010487429 @default.
- W2937375783 hasAuthorship W2937375783A5048970390 @default.
- W2937375783 hasAuthorship W2937375783A5050705404 @default.
- W2937375783 hasAuthorship W2937375783A5069072700 @default.
- W2937375783 hasAuthorship W2937375783A5074580850 @default.
- W2937375783 hasBestOaLocation W29373757831 @default.
- W2937375783 hasConcept C104317684 @default.
- W2937375783 hasConcept C119857082 @default.
- W2937375783 hasConcept C124101348 @default.
- W2937375783 hasConcept C151730666 @default.
- W2937375783 hasConcept C154945302 @default.
- W2937375783 hasConcept C177264268 @default.
- W2937375783 hasConcept C185592680 @default.
- W2937375783 hasConcept C199360897 @default.
- W2937375783 hasConcept C2779343474 @default.
- W2937375783 hasConcept C41008148 @default.
- W2937375783 hasConcept C45804977 @default.
- W2937375783 hasConcept C51632099 @default.
- W2937375783 hasConcept C55493867 @default.
- W2937375783 hasConcept C58489278 @default.
- W2937375783 hasConcept C63479239 @default.
- W2937375783 hasConcept C86803240 @default.
- W2937375783 hasConceptScore W2937375783C104317684 @default.
- W2937375783 hasConceptScore W2937375783C119857082 @default.
- W2937375783 hasConceptScore W2937375783C124101348 @default.
- W2937375783 hasConceptScore W2937375783C151730666 @default.
- W2937375783 hasConceptScore W2937375783C154945302 @default.
- W2937375783 hasConceptScore W2937375783C177264268 @default.
- W2937375783 hasConceptScore W2937375783C185592680 @default.
- W2937375783 hasConceptScore W2937375783C199360897 @default.
- W2937375783 hasConceptScore W2937375783C2779343474 @default.
- W2937375783 hasConceptScore W2937375783C41008148 @default.
- W2937375783 hasConceptScore W2937375783C45804977 @default.
- W2937375783 hasConceptScore W2937375783C51632099 @default.
- W2937375783 hasConceptScore W2937375783C55493867 @default.
- W2937375783 hasConceptScore W2937375783C58489278 @default.
- W2937375783 hasConceptScore W2937375783C63479239 @default.
- W2937375783 hasConceptScore W2937375783C86803240 @default.
- W2937375783 hasFunder F4320320879 @default.
- W2937375783 hasFunder F4320321114 @default.
- W2937375783 hasIssue "2" @default.
- W2937375783 hasLocation W29373757831 @default.
- W2937375783 hasLocation W29373757832 @default.
- W2937375783 hasLocation W29373757833 @default.
- W2937375783 hasOpenAccess W2937375783 @default.
- W2937375783 hasPrimaryLocation W29373757831 @default.
- W2937375783 hasRelatedWork W2786391746 @default.
- W2937375783 hasRelatedWork W2914559142 @default.
- W2937375783 hasRelatedWork W2991483587 @default.
- W2937375783 hasRelatedWork W2995102745 @default.
- W2937375783 hasRelatedWork W3043432080 @default.
- W2937375783 hasRelatedWork W3106528173 @default.
- W2937375783 hasRelatedWork W3132346564 @default.
- W2937375783 hasRelatedWork W4226059458 @default.
- W2937375783 hasRelatedWork W4317600379 @default.
- W2937375783 hasRelatedWork W4381430104 @default.