Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937537701> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2937537701 abstract "The Automatic Dependent Surveillance-Broadcast (ADS-B) system is a key component of the Next Generation Air Transportation System (NextGen) that manages the increasingly congested airspace. It provides accurate aircraft localization and efficient air traffic management and also improves the safety of billions of current and future passengers. While the benefits of ADS-B are well known, the lack of basic security measures like encryption and authentication introduces various exploitable security vulnerabilities. One practical threat is the ADS-B spoofing attack that targets the ADS-B ground station, in which the ground-based or aircraft-based attacker manipulates the International Civil Aviation Organization (ICAO) address (a unique identifier for each aircraft) in the ADS-B messages to fake the appearance of non-existent aircraft or masquerade as a trusted aircraft. As a result, this attack can confuse the pilots or the air traffic control personnel and cause dangerous maneuvers. In this paper, we introduce SODA - a two-stage Deep Neural Network (DNN)-based spoofing detector for ADS-B that consists of a message classifier and an aircraft classifier. It allows a ground station to examine each incoming message based on the PHY-layer features (e.g., IQ samples and phases) and flag suspicious messages. Our experimental results show that SODA detects ground-based spoofing attacks with a probability of 99.34%, while having a very small false alarm rate (i.e., 0.43%). It outperforms other machine learning techniques such as XGBoost, Logistic Regression, and Support Vector Machine. It further identifies individual aircraft with an average F-score of 96.68% and an accuracy of 96.66%, with a significant improvement over the state-of-the-art detector." @default.
- W2937537701 created "2019-04-25" @default.
- W2937537701 creator A5003489427 @default.
- W2937537701 creator A5027973093 @default.
- W2937537701 creator A5043570662 @default.
- W2937537701 creator A5063847107 @default.
- W2937537701 creator A5079723268 @default.
- W2937537701 creator A5087353419 @default.
- W2937537701 date "2019-04-22" @default.
- W2937537701 modified "2023-10-16" @default.
- W2937537701 title "Detecting ADS-B Spoofing Attacks using Deep Neural Networks" @default.
- W2937537701 cites W1515073590 @default.
- W2937537701 cites W1558021871 @default.
- W2937537701 cites W1596717185 @default.
- W2937537701 cites W1926641780 @default.
- W2937537701 cites W1946476891 @default.
- W2937537701 cites W1973948212 @default.
- W2937537701 cites W2038810443 @default.
- W2937537701 cites W2089255914 @default.
- W2937537701 cites W2134300758 @default.
- W2937537701 cites W2159329869 @default.
- W2937537701 cites W2160815625 @default.
- W2937537701 cites W2170505850 @default.
- W2937537701 cites W2465984462 @default.
- W2937537701 cites W2772531505 @default.
- W2937537701 cites W2774222358 @default.
- W2937537701 cites W2949117887 @default.
- W2937537701 cites W389131132 @default.
- W2937537701 cites W1607328905 @default.
- W2937537701 cites W2402615882 @default.
- W2937537701 doi "https://doi.org/10.48550/arxiv.1904.09969" @default.
- W2937537701 hasPublicationYear "2019" @default.
- W2937537701 type Work @default.
- W2937537701 sameAs 2937537701 @default.
- W2937537701 citedByCount "0" @default.
- W2937537701 crossrefType "posted-content" @default.
- W2937537701 hasAuthorship W2937537701A5003489427 @default.
- W2937537701 hasAuthorship W2937537701A5027973093 @default.
- W2937537701 hasAuthorship W2937537701A5043570662 @default.
- W2937537701 hasAuthorship W2937537701A5063847107 @default.
- W2937537701 hasAuthorship W2937537701A5079723268 @default.
- W2937537701 hasAuthorship W2937537701A5087353419 @default.
- W2937537701 hasBestOaLocation W29375377011 @default.
- W2937537701 hasConcept C12267149 @default.
- W2937537701 hasConcept C127413603 @default.
- W2937537701 hasConcept C146978453 @default.
- W2937537701 hasConcept C154945302 @default.
- W2937537701 hasConcept C166961238 @default.
- W2937537701 hasConcept C167900197 @default.
- W2937537701 hasConcept C183384803 @default.
- W2937537701 hasConcept C2776777543 @default.
- W2937537701 hasConcept C31258907 @default.
- W2937537701 hasConcept C38652104 @default.
- W2937537701 hasConcept C41008148 @default.
- W2937537701 hasConceptScore W2937537701C12267149 @default.
- W2937537701 hasConceptScore W2937537701C127413603 @default.
- W2937537701 hasConceptScore W2937537701C146978453 @default.
- W2937537701 hasConceptScore W2937537701C154945302 @default.
- W2937537701 hasConceptScore W2937537701C166961238 @default.
- W2937537701 hasConceptScore W2937537701C167900197 @default.
- W2937537701 hasConceptScore W2937537701C183384803 @default.
- W2937537701 hasConceptScore W2937537701C2776777543 @default.
- W2937537701 hasConceptScore W2937537701C31258907 @default.
- W2937537701 hasConceptScore W2937537701C38652104 @default.
- W2937537701 hasConceptScore W2937537701C41008148 @default.
- W2937537701 hasLocation W29375377011 @default.
- W2937537701 hasOpenAccess W2937537701 @default.
- W2937537701 hasPrimaryLocation W29375377011 @default.
- W2937537701 hasRelatedWork W2035182600 @default.
- W2937537701 hasRelatedWork W2069123891 @default.
- W2937537701 hasRelatedWork W2542262175 @default.
- W2937537701 hasRelatedWork W2767200452 @default.
- W2937537701 hasRelatedWork W2910446101 @default.
- W2937537701 hasRelatedWork W2911493913 @default.
- W2937537701 hasRelatedWork W2937537701 @default.
- W2937537701 hasRelatedWork W2969954411 @default.
- W2937537701 hasRelatedWork W4283827106 @default.
- W2937537701 hasRelatedWork W47214738 @default.
- W2937537701 isParatext "false" @default.
- W2937537701 isRetracted "false" @default.
- W2937537701 magId "2937537701" @default.
- W2937537701 workType "article" @default.