Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937555392> ?p ?o ?g. }
- W2937555392 endingPage "734" @default.
- W2937555392 startingPage "734" @default.
- W2937555392 abstract "Hydrological studies are useful in designing, planning, and managing water resources, infrastructure, and ecosystems. Probability distribution models are applied in extreme flood analysis, drought investigations, reservoir volumes studies, and time-series modelling, among other various hydrological studies. However, the selection of the most suitable probability distribution and associated parameter estimation procedure, as a fundamental step in flood frequency analysis, has remained the most difficult task for many researchers and water practitioners. This paper explains the current approaches that are used to identify the probability distribution functions that are best suited for the estimation of maximum, minimum, and mean streamflows. Then, it compares the performance of six probability distributions, and illustrates four fitting tests, evaluation procedures, and selection procedures through using a river basin as a case study. An assemblage of the latest computer statistical packages in an integrated development environment for the R programming language was applied. Maximum likelihood estimation (MLE), goodness-of-fit (GoF) tests-based analysis, and information criteria-based selection procedures were used to identify the most suitable distribution models. The results showed that the gamma (Pearson type 3) and lognormal distribution models were the best-fit functions for maximum streamflows, since they had the lowest Akaike Information Criterion values of 1083 and 1081, and Bayesian Information Criterion (BIC) values corresponding to 1087 and 1086, respectively. The Weibull, GEV, and Gumbel functions were the best-fit functions for the annual minimum flows of the Tana River, while the lognormal and GEV distribution functions the best-fit functions for the annual mean flows of the Tana River. The choices of the selected distribution functions may be used for forecasting hydrologic events and detecting the inherent stochastic characteristics of the hydrologic variables for predictions in the Tana River Basin. This paper also provides a significant contribution to the current understanding of predicting extreme hydrological events for various purposes. It indicates a direction for hydro-meteorological scientists within the current debate surrounding whether to use historical data and trend estimation techniques for predicting future events with issues of non-stationarity and underlying stochastic processes." @default.
- W2937555392 created "2019-04-25" @default.
- W2937555392 creator A5027499246 @default.
- W2937555392 creator A5027569254 @default.
- W2937555392 creator A5089823872 @default.
- W2937555392 date "2019-04-09" @default.
- W2937555392 modified "2023-10-11" @default.
- W2937555392 title "Identification of the Most Suitable Probability Distribution Models for Maximum, Minimum, and Mean Streamflow" @default.
- W2937555392 cites W1481794564 @default.
- W2937555392 cites W1519450090 @default.
- W2937555392 cites W1557277208 @default.
- W2937555392 cites W1614755830 @default.
- W2937555392 cites W1675054273 @default.
- W2937555392 cites W1754423787 @default.
- W2937555392 cites W1781190607 @default.
- W2937555392 cites W1953781065 @default.
- W2937555392 cites W1964513767 @default.
- W2937555392 cites W1968293479 @default.
- W2937555392 cites W1973429805 @default.
- W2937555392 cites W1975138826 @default.
- W2937555392 cites W1978823177 @default.
- W2937555392 cites W1987129457 @default.
- W2937555392 cites W2017030421 @default.
- W2937555392 cites W2017463879 @default.
- W2937555392 cites W2019903475 @default.
- W2937555392 cites W2026912756 @default.
- W2937555392 cites W2033445152 @default.
- W2937555392 cites W2038111684 @default.
- W2937555392 cites W2041142253 @default.
- W2937555392 cites W2043836235 @default.
- W2937555392 cites W2049439226 @default.
- W2937555392 cites W2050017654 @default.
- W2937555392 cites W2050541218 @default.
- W2937555392 cites W2057545303 @default.
- W2937555392 cites W2059619130 @default.
- W2937555392 cites W2064474201 @default.
- W2937555392 cites W2067278747 @default.
- W2937555392 cites W2072198250 @default.
- W2937555392 cites W2075008680 @default.
- W2937555392 cites W2082001988 @default.
- W2937555392 cites W2083254329 @default.
- W2937555392 cites W2087406343 @default.
- W2937555392 cites W2089763487 @default.
- W2937555392 cites W2109413631 @default.
- W2937555392 cites W2112662303 @default.
- W2937555392 cites W2114920071 @default.
- W2937555392 cites W2147502651 @default.
- W2937555392 cites W2161017342 @default.
- W2937555392 cites W2165172602 @default.
- W2937555392 cites W2254653100 @default.
- W2937555392 cites W2344222622 @default.
- W2937555392 cites W2406985093 @default.
- W2937555392 cites W2530512345 @default.
- W2937555392 cites W2727751266 @default.
- W2937555392 cites W2766581070 @default.
- W2937555392 cites W2766778389 @default.
- W2937555392 cites W2792010725 @default.
- W2937555392 cites W2799742069 @default.
- W2937555392 cites W2891237963 @default.
- W2937555392 cites W2891861176 @default.
- W2937555392 cites W2905890090 @default.
- W2937555392 cites W2909441334 @default.
- W2937555392 cites W2915131803 @default.
- W2937555392 cites W4231343603 @default.
- W2937555392 cites W4236128260 @default.
- W2937555392 doi "https://doi.org/10.3390/w11040734" @default.
- W2937555392 hasPublicationYear "2019" @default.
- W2937555392 type Work @default.
- W2937555392 sameAs 2937555392 @default.
- W2937555392 citedByCount "52" @default.
- W2937555392 countsByYear W29375553922020 @default.
- W2937555392 countsByYear W29375553922021 @default.
- W2937555392 countsByYear W29375553922022 @default.
- W2937555392 countsByYear W29375553922023 @default.
- W2937555392 crossrefType "journal-article" @default.
- W2937555392 hasAuthorship W2937555392A5027499246 @default.
- W2937555392 hasAuthorship W2937555392A5027569254 @default.
- W2937555392 hasAuthorship W2937555392A5089823872 @default.
- W2937555392 hasBestOaLocation W29375553921 @default.
- W2937555392 hasConcept C105795698 @default.
- W2937555392 hasConcept C107673813 @default.
- W2937555392 hasConcept C119857082 @default.
- W2937555392 hasConcept C126674687 @default.
- W2937555392 hasConcept C132480984 @default.
- W2937555392 hasConcept C137610916 @default.
- W2937555392 hasConcept C147581598 @default.
- W2937555392 hasConcept C149441793 @default.
- W2937555392 hasConcept C149717495 @default.
- W2937555392 hasConcept C151620405 @default.
- W2937555392 hasConcept C160947583 @default.
- W2937555392 hasConcept C168136583 @default.
- W2937555392 hasConcept C173291955 @default.
- W2937555392 hasConcept C33923547 @default.
- W2937555392 hasConcept C41008148 @default.
- W2937555392 hasConcept C81917197 @default.
- W2937555392 hasConcept C93959086 @default.
- W2937555392 hasConceptScore W2937555392C105795698 @default.
- W2937555392 hasConceptScore W2937555392C107673813 @default.