Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937621662> ?p ?o ?g. }
- W2937621662 endingPage "102" @default.
- W2937621662 startingPage "85" @default.
- W2937621662 abstract "Surrogate models are often used to reduce the cost of design optimization problems that involve computationally costly models, such as computational fluid dynamics simulations. However, the number of evaluations required by surrogate models usually scales poorly with the number of design variables, and there is a need for both better constraint formulations and multimodal function handling. To address this issue, we developed a surrogate-based gradient-free optimization algorithm that can handle cases where the function evaluations are expensive, the computational budget is limited, the functions are multimodal, and the optimization problem includes nonlinear equality or inequality constraints. The proposed algorithm—super efficient global optimization coupled with mixture of experts (SEGOMOE)—can tackle complex constrained design optimization problems through the use of an enrichment strategy based on a mixture of experts coupled with adaptive surrogate models. The performance of this approach was evaluated for analytic constrained and unconstrained problems, as well as for a multimodal aerodynamic shape optimization problem with 17 design variables and an equality constraint. Our results showed that the method is efficient and that the optimum is much less dependent on the starting point than the conventional gradient-based optimization." @default.
- W2937621662 created "2019-04-25" @default.
- W2937621662 creator A5002602051 @default.
- W2937621662 creator A5005187572 @default.
- W2937621662 creator A5008316632 @default.
- W2937621662 creator A5055659720 @default.
- W2937621662 creator A5061237162 @default.
- W2937621662 creator A5064441981 @default.
- W2937621662 creator A5070320051 @default.
- W2937621662 creator A5087544233 @default.
- W2937621662 date "2019-07-01" @default.
- W2937621662 modified "2023-10-14" @default.
- W2937621662 title "Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design" @default.
- W2937621662 cites W1510052597 @default.
- W2937621662 cites W1970101292 @default.
- W2937621662 cites W1970821085 @default.
- W2937621662 cites W197187682 @default.
- W2937621662 cites W1981270896 @default.
- W2937621662 cites W1984753492 @default.
- W2937621662 cites W1990199181 @default.
- W2937621662 cites W1994352665 @default.
- W2937621662 cites W2010400718 @default.
- W2937621662 cites W2012884505 @default.
- W2937621662 cites W2020314427 @default.
- W2937621662 cites W2023242330 @default.
- W2937621662 cites W2024040438 @default.
- W2937621662 cites W2024697317 @default.
- W2937621662 cites W2024948279 @default.
- W2937621662 cites W2033036924 @default.
- W2937621662 cites W2033611608 @default.
- W2937621662 cites W2043662222 @default.
- W2937621662 cites W2048711666 @default.
- W2937621662 cites W2054352980 @default.
- W2937621662 cites W2073819788 @default.
- W2937621662 cites W2093229042 @default.
- W2937621662 cites W2094132822 @default.
- W2937621662 cites W2095154945 @default.
- W2937621662 cites W2108080195 @default.
- W2937621662 cites W2121631591 @default.
- W2937621662 cites W2126105956 @default.
- W2937621662 cites W2138002307 @default.
- W2937621662 cites W2138537392 @default.
- W2937621662 cites W2146791662 @default.
- W2937621662 cites W2147766706 @default.
- W2937621662 cites W2151092342 @default.
- W2937621662 cites W2160960847 @default.
- W2937621662 cites W2219010958 @default.
- W2937621662 cites W2240112237 @default.
- W2937621662 cites W2405379716 @default.
- W2937621662 cites W2468770775 @default.
- W2937621662 cites W2485514315 @default.
- W2937621662 cites W2508934152 @default.
- W2937621662 cites W2577652517 @default.
- W2937621662 cites W2609466678 @default.
- W2937621662 cites W2626257496 @default.
- W2937621662 cites W2791048158 @default.
- W2937621662 cites W2805376890 @default.
- W2937621662 cites W2887152147 @default.
- W2937621662 cites W2911222224 @default.
- W2937621662 cites W2918809447 @default.
- W2937621662 cites W3122455945 @default.
- W2937621662 cites W3215186461 @default.
- W2937621662 doi "https://doi.org/10.1016/j.ast.2019.03.041" @default.
- W2937621662 hasPublicationYear "2019" @default.
- W2937621662 type Work @default.
- W2937621662 sameAs 2937621662 @default.
- W2937621662 citedByCount "63" @default.
- W2937621662 countsByYear W29376216622019 @default.
- W2937621662 countsByYear W29376216622020 @default.
- W2937621662 countsByYear W29376216622021 @default.
- W2937621662 countsByYear W29376216622022 @default.
- W2937621662 countsByYear W29376216622023 @default.
- W2937621662 crossrefType "journal-article" @default.
- W2937621662 hasAuthorship W2937621662A5002602051 @default.
- W2937621662 hasAuthorship W2937621662A5005187572 @default.
- W2937621662 hasAuthorship W2937621662A5008316632 @default.
- W2937621662 hasAuthorship W2937621662A5055659720 @default.
- W2937621662 hasAuthorship W2937621662A5061237162 @default.
- W2937621662 hasAuthorship W2937621662A5064441981 @default.
- W2937621662 hasAuthorship W2937621662A5070320051 @default.
- W2937621662 hasAuthorship W2937621662A5087544233 @default.
- W2937621662 hasBestOaLocation W29376216621 @default.
- W2937621662 hasConcept C110850998 @default.
- W2937621662 hasConcept C122357587 @default.
- W2937621662 hasConcept C126255220 @default.
- W2937621662 hasConcept C127413603 @default.
- W2937621662 hasConcept C131675550 @default.
- W2937621662 hasConcept C13393347 @default.
- W2937621662 hasConcept C137836250 @default.
- W2937621662 hasConcept C146978453 @default.
- W2937621662 hasConcept C164752517 @default.
- W2937621662 hasConcept C2524010 @default.
- W2937621662 hasConcept C2776036281 @default.
- W2937621662 hasConcept C33923547 @default.
- W2937621662 hasConcept C41008148 @default.
- W2937621662 hasConcept C55660270 @default.
- W2937621662 hasConcept C6180225 @default.
- W2937621662 hasConcept C92995354 @default.