Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937627530> ?p ?o ?g. }
- W2937627530 endingPage "50" @default.
- W2937627530 startingPage "37" @default.
- W2937627530 abstract "The purpose of this study is to identify the customers' primary topics of concern regarding online retail brands that are shared among Twitter users. This study collects tweets associated with five leading UK online retailers covering the period from Black Friday to Christmas and New Year's sales. We use a combination of text analytical approaches including topic modelling, sentiment analysis, and network analysis to analyse the tweets. Through the analysis, we identify that delivery, product and customer service are among the most-discussed topics on Twitter. We also highlight the areas that receive the most negative customer sentiments such as delivery and customer service. Interestingly, we also identify emerging topics such as online engagement and in-store experience that are not captured by the existing literature on online retailing. Through a network analysis, we underscore the relationships among those important topics. This study derives insights on how well the leading online retail brands are performing and how their products and services are perceived by their customers. These insights can help businesses understand customers better and enable them to convert the information into meaningful knowledge to improve their business performance. The study offers a novel approach of transforming social media data into useful knowledge about online retailing. The incorporation of three analytical approaches offers insights for researchers to understand the hidden content behind the large collections of unstructured bodies of text, and this information can be used to improve online retailing services and reach out to customers." @default.
- W2937627530 created "2019-04-25" @default.
- W2937627530 creator A5043286499 @default.
- W2937627530 creator A5070884581 @default.
- W2937627530 date "2019-06-01" @default.
- W2937627530 modified "2023-10-03" @default.
- W2937627530 title "A text analytics approach for online retailing service improvement: Evidence from Twitter" @default.
- W2937627530 cites W1162054679 @default.
- W2937627530 cites W1194372791 @default.
- W2937627530 cites W1428111796 @default.
- W2937627530 cites W1490772138 @default.
- W2937627530 cites W1505596080 @default.
- W2937627530 cites W1553194690 @default.
- W2937627530 cites W1561377167 @default.
- W2937627530 cites W186727601 @default.
- W2937627530 cites W1933011932 @default.
- W2937627530 cites W1938800651 @default.
- W2937627530 cites W1966599906 @default.
- W2937627530 cites W1972898067 @default.
- W2937627530 cites W1978712750 @default.
- W2937627530 cites W1981711535 @default.
- W2937627530 cites W1981838369 @default.
- W2937627530 cites W1983296383 @default.
- W2937627530 cites W1984153006 @default.
- W2937627530 cites W1991883547 @default.
- W2937627530 cites W2001082470 @default.
- W2937627530 cites W2003029655 @default.
- W2937627530 cites W2004196287 @default.
- W2937627530 cites W2008132350 @default.
- W2937627530 cites W2008179038 @default.
- W2937627530 cites W2011639028 @default.
- W2937627530 cites W2020999234 @default.
- W2937627530 cites W2022318086 @default.
- W2937627530 cites W2029485242 @default.
- W2937627530 cites W2037809001 @default.
- W2937627530 cites W2038404411 @default.
- W2937627530 cites W2039429194 @default.
- W2937627530 cites W2040716619 @default.
- W2937627530 cites W2040924390 @default.
- W2937627530 cites W2042964157 @default.
- W2937627530 cites W2044804146 @default.
- W2937627530 cites W2046344967 @default.
- W2937627530 cites W2047624089 @default.
- W2937627530 cites W2048190771 @default.
- W2937627530 cites W2059172850 @default.
- W2937627530 cites W2061887386 @default.
- W2937627530 cites W2071535931 @default.
- W2937627530 cites W2072322795 @default.
- W2937627530 cites W2072586921 @default.
- W2937627530 cites W2085744223 @default.
- W2937627530 cites W2090297890 @default.
- W2937627530 cites W2096361659 @default.
- W2937627530 cites W2097357438 @default.
- W2937627530 cites W2100043458 @default.
- W2937627530 cites W2104212223 @default.
- W2937627530 cites W2121001699 @default.
- W2937627530 cites W2126351352 @default.
- W2937627530 cites W2132314509 @default.
- W2937627530 cites W2132629719 @default.
- W2937627530 cites W2153530949 @default.
- W2937627530 cites W2160251866 @default.
- W2937627530 cites W2171468534 @default.
- W2937627530 cites W2174706414 @default.
- W2937627530 cites W2221728952 @default.
- W2937627530 cites W2261525379 @default.
- W2937627530 cites W2271153056 @default.
- W2937627530 cites W2283968330 @default.
- W2937627530 cites W2297112056 @default.
- W2937627530 cites W2333763974 @default.
- W2937627530 cites W2341256577 @default.
- W2937627530 cites W2343307093 @default.
- W2937627530 cites W2443610588 @default.
- W2937627530 cites W2461199507 @default.
- W2937627530 cites W2521150446 @default.
- W2937627530 cites W2550706273 @default.
- W2937627530 cites W2559286704 @default.
- W2937627530 cites W2587108171 @default.
- W2937627530 cites W2587189985 @default.
- W2937627530 cites W2592296456 @default.
- W2937627530 cites W2599766447 @default.
- W2937627530 cites W2601223312 @default.
- W2937627530 cites W2622765476 @default.
- W2937627530 cites W2729974188 @default.
- W2937627530 cites W2772076243 @default.
- W2937627530 cites W2790598369 @default.
- W2937627530 cites W3121958491 @default.
- W2937627530 cites W3122795544 @default.
- W2937627530 cites W3125738729 @default.
- W2937627530 cites W4205184193 @default.
- W2937627530 cites W4255173720 @default.
- W2937627530 cites W784357118 @default.
- W2937627530 cites W786319295 @default.
- W2937627530 cites W818310665 @default.
- W2937627530 cites W9715319 @default.
- W2937627530 doi "https://doi.org/10.1016/j.dss.2019.03.002" @default.
- W2937627530 hasPublicationYear "2019" @default.
- W2937627530 type Work @default.
- W2937627530 sameAs 2937627530 @default.