Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937778840> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2937778840 abstract "Atom-probe tomography (APT) facilitates nano- and atomic-scale characterization and analysis of microstructural features. Specifically, APT is well suited to study the interfacial properties of granular or heterophase systems. Traditionally, the identification of the interface between, for precipitate and matrix phases, in APT data has been obtained either by extracting iso-concentration surfaces based on a user-supplied concentration value or by manually perturbing the concentration value until the iso-concentration surface qualitatively matches the interface. These approaches are subjective, not scalable, and may lead to inconsistencies due to local composition inhomogeneities. We propose a digital image segmentation approach based on deep neural networks that transfer learned knowledge from natural images to automatically segment the data obtained from APT into different phases. This approach not only provides an efficient way to segment the data and extract interfacial properties but does so without the need for expensive interface labeling for training the segmentation model. We consider here a system with a precipitate phase in a matrix and with three different interface modalities---layered, isolated, and interconnected---that are obtained for different relative geometries of the precipitate phase. We demonstrate the accuracy of our segmentation approach through qualitative visualization of the interfaces, as well as through quantitative comparisons with proximity histograms obtained by using more traditional approaches." @default.
- W2937778840 created "2019-04-25" @default.
- W2937778840 creator A5004608167 @default.
- W2937778840 creator A5012924948 @default.
- W2937778840 creator A5020711302 @default.
- W2937778840 creator A5054004822 @default.
- W2937778840 creator A5063276469 @default.
- W2937778840 creator A5063950942 @default.
- W2937778840 creator A5068721920 @default.
- W2937778840 date "2019-04-10" @default.
- W2937778840 modified "2023-09-27" @default.
- W2937778840 title "Phase Segmentation in Atom-Probe Tomography Using Deep Learning-Based Edge Detection" @default.
- W2937778840 hasPublicationYear "2019" @default.
- W2937778840 type Work @default.
- W2937778840 sameAs 2937778840 @default.
- W2937778840 citedByCount "0" @default.
- W2937778840 crossrefType "posted-content" @default.
- W2937778840 hasAuthorship W2937778840A5004608167 @default.
- W2937778840 hasAuthorship W2937778840A5012924948 @default.
- W2937778840 hasAuthorship W2937778840A5020711302 @default.
- W2937778840 hasAuthorship W2937778840A5054004822 @default.
- W2937778840 hasAuthorship W2937778840A5063276469 @default.
- W2937778840 hasAuthorship W2937778840A5063950942 @default.
- W2937778840 hasAuthorship W2937778840A5068721920 @default.
- W2937778840 hasConcept C106487976 @default.
- W2937778840 hasConcept C113843644 @default.
- W2937778840 hasConcept C115961682 @default.
- W2937778840 hasConcept C116834253 @default.
- W2937778840 hasConcept C153180895 @default.
- W2937778840 hasConcept C154945302 @default.
- W2937778840 hasConcept C159985019 @default.
- W2937778840 hasConcept C162307627 @default.
- W2937778840 hasConcept C16876290 @default.
- W2937778840 hasConcept C178790620 @default.
- W2937778840 hasConcept C185592680 @default.
- W2937778840 hasConcept C192562407 @default.
- W2937778840 hasConcept C196806460 @default.
- W2937778840 hasConcept C2780026712 @default.
- W2937778840 hasConcept C28413391 @default.
- W2937778840 hasConcept C36464697 @default.
- W2937778840 hasConcept C41008148 @default.
- W2937778840 hasConcept C44280652 @default.
- W2937778840 hasConcept C50644808 @default.
- W2937778840 hasConcept C53533937 @default.
- W2937778840 hasConcept C59822182 @default.
- W2937778840 hasConcept C86803240 @default.
- W2937778840 hasConcept C89600930 @default.
- W2937778840 hasConceptScore W2937778840C106487976 @default.
- W2937778840 hasConceptScore W2937778840C113843644 @default.
- W2937778840 hasConceptScore W2937778840C115961682 @default.
- W2937778840 hasConceptScore W2937778840C116834253 @default.
- W2937778840 hasConceptScore W2937778840C153180895 @default.
- W2937778840 hasConceptScore W2937778840C154945302 @default.
- W2937778840 hasConceptScore W2937778840C159985019 @default.
- W2937778840 hasConceptScore W2937778840C162307627 @default.
- W2937778840 hasConceptScore W2937778840C16876290 @default.
- W2937778840 hasConceptScore W2937778840C178790620 @default.
- W2937778840 hasConceptScore W2937778840C185592680 @default.
- W2937778840 hasConceptScore W2937778840C192562407 @default.
- W2937778840 hasConceptScore W2937778840C196806460 @default.
- W2937778840 hasConceptScore W2937778840C2780026712 @default.
- W2937778840 hasConceptScore W2937778840C28413391 @default.
- W2937778840 hasConceptScore W2937778840C36464697 @default.
- W2937778840 hasConceptScore W2937778840C41008148 @default.
- W2937778840 hasConceptScore W2937778840C44280652 @default.
- W2937778840 hasConceptScore W2937778840C50644808 @default.
- W2937778840 hasConceptScore W2937778840C53533937 @default.
- W2937778840 hasConceptScore W2937778840C59822182 @default.
- W2937778840 hasConceptScore W2937778840C86803240 @default.
- W2937778840 hasConceptScore W2937778840C89600930 @default.
- W2937778840 hasLocation W29377788401 @default.
- W2937778840 hasOpenAccess W2937778840 @default.
- W2937778840 hasPrimaryLocation W29377788401 @default.
- W2937778840 hasRelatedWork W1515989309 @default.
- W2937778840 hasRelatedWork W1527807830 @default.
- W2937778840 hasRelatedWork W1965735524 @default.
- W2937778840 hasRelatedWork W1981372852 @default.
- W2937778840 hasRelatedWork W1984356394 @default.
- W2937778840 hasRelatedWork W2004949143 @default.
- W2937778840 hasRelatedWork W2027208406 @default.
- W2937778840 hasRelatedWork W2040679279 @default.
- W2937778840 hasRelatedWork W2040993443 @default.
- W2937778840 hasRelatedWork W2048911879 @default.
- W2937778840 hasRelatedWork W2077755747 @default.
- W2937778840 hasRelatedWork W2087548577 @default.
- W2937778840 hasRelatedWork W2524789287 @default.
- W2937778840 hasRelatedWork W2962777415 @default.
- W2937778840 hasRelatedWork W3080106026 @default.
- W2937778840 hasRelatedWork W3091893257 @default.
- W2937778840 hasRelatedWork W3120515522 @default.
- W2937778840 hasRelatedWork W3129667281 @default.
- W2937778840 hasRelatedWork W3204033341 @default.
- W2937778840 hasRelatedWork W77111903 @default.
- W2937778840 isParatext "false" @default.
- W2937778840 isRetracted "false" @default.
- W2937778840 magId "2937778840" @default.
- W2937778840 workType "article" @default.