Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937831143> ?p ?o ?g. }
- W2937831143 endingPage "918" @default.
- W2937831143 startingPage "899" @default.
- W2937831143 abstract "Statistics show that the risk of autism spectrum disorder (ASD) is increasing in the world. Early diagnosis is most important factor in treatment of ASD. Thus far, the childhood diagnosis of ASD has been done based on clinical interviews and behavioral observations. There is a significant need to reduce the use of traditional diagnostic techniques and to diagnose this disorder in the right time and before the manifestation of behavioral symptoms. The purpose of this study is to present the intelligent model to diagnose ASD in young children based on resting-state functional magnetic resonance imaging (rs-fMRI) data using convolutional neural networks (CNNs). CNNs, which are by far one of the most powerful deep learning algorithms, are mainly trained using datasets with large numbers of samples. However, obtaining comprehensive datasets such as ImageNet and achieving acceptable results in medical imaging domain have become challenges. In order to overcome these two challenges, the two methods of “combining classifiers,” both dynamic (mixture of experts) and static (simple Bayes) approaches, and “transfer learning” were used in this analysis. In addition, since diagnosis of ASD will be much more effective at an early age, samples ranging in age from 5 to 10 years from global Autism Brain Imaging Data Exchange I and II (ABIDE I and ABIDE II) datasets were used in this research. The accuracy, sensitivity, and specificity of presented model outperform the results of previous studies conducted on ABIDE I dataset (the best results obtained from Adamax optimization technique: accuracy = 0.7273, sensitivity = 0.712, specificity = 0.7348). Furthermore, acceptable classification results were obtained from ABIDE II dataset (the best results obtained from Adamax optimization technique: accuracy = 0.7, sensitivity = 0.582, specificity = 0.804) and the combination of ABIDE I and ABIDE II datasets (the best results obtained from Adam optimization technique: accuracy = 0.7045, sensitivity = 0.679, specificity = 0.7421). We can conclude that the proposed architecture can be considered as an efficient tool for diagnosis of ASD in young children. From another perspective, this proposed method can be applied to analyzing rs-fMRI data related to brain dysfunctions." @default.
- W2937831143 created "2019-04-25" @default.
- W2937831143 creator A5019256819 @default.
- W2937831143 creator A5045097170 @default.
- W2937831143 creator A5065231120 @default.
- W2937831143 date "2019-04-08" @default.
- W2937831143 modified "2023-10-18" @default.
- W2937831143 title "Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks" @default.
- W2937831143 cites W1575935080 @default.
- W2937831143 cites W1760829075 @default.
- W2937831143 cites W1972498024 @default.
- W2937831143 cites W1973140577 @default.
- W2937831143 cites W1974874858 @default.
- W2937831143 cites W1997469637 @default.
- W2937831143 cites W1998582365 @default.
- W2937831143 cites W2005176066 @default.
- W2937831143 cites W2006591500 @default.
- W2937831143 cites W2016444985 @default.
- W2937831143 cites W2045448468 @default.
- W2937831143 cites W2057504626 @default.
- W2937831143 cites W2057607467 @default.
- W2937831143 cites W2068050374 @default.
- W2937831143 cites W2105277853 @default.
- W2937831143 cites W2108384452 @default.
- W2937831143 cites W2117539524 @default.
- W2937831143 cites W2120759354 @default.
- W2937831143 cites W2126598020 @default.
- W2937831143 cites W2136435696 @default.
- W2937831143 cites W2145889472 @default.
- W2937831143 cites W2150884987 @default.
- W2937831143 cites W2167868121 @default.
- W2937831143 cites W2176950688 @default.
- W2937831143 cites W2238108400 @default.
- W2937831143 cites W2253429366 @default.
- W2937831143 cites W2510597476 @default.
- W2937831143 cites W2561837554 @default.
- W2937831143 cites W4211261982 @default.
- W2937831143 doi "https://doi.org/10.1007/s10278-019-00196-1" @default.
- W2937831143 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6841914" @default.
- W2937831143 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30963340" @default.
- W2937831143 hasPublicationYear "2019" @default.
- W2937831143 type Work @default.
- W2937831143 sameAs 2937831143 @default.
- W2937831143 citedByCount "46" @default.
- W2937831143 countsByYear W29378311432020 @default.
- W2937831143 countsByYear W29378311432021 @default.
- W2937831143 countsByYear W29378311432022 @default.
- W2937831143 countsByYear W29378311432023 @default.
- W2937831143 crossrefType "journal-article" @default.
- W2937831143 hasAuthorship W2937831143A5019256819 @default.
- W2937831143 hasAuthorship W2937831143A5045097170 @default.
- W2937831143 hasAuthorship W2937831143A5065231120 @default.
- W2937831143 hasBestOaLocation W29378311432 @default.
- W2937831143 hasConcept C108583219 @default.
- W2937831143 hasConcept C118552586 @default.
- W2937831143 hasConcept C119857082 @default.
- W2937831143 hasConcept C12267149 @default.
- W2937831143 hasConcept C126838900 @default.
- W2937831143 hasConcept C143409427 @default.
- W2937831143 hasConcept C150899416 @default.
- W2937831143 hasConcept C153180895 @default.
- W2937831143 hasConcept C154945302 @default.
- W2937831143 hasConcept C15744967 @default.
- W2937831143 hasConcept C169760540 @default.
- W2937831143 hasConcept C205778803 @default.
- W2937831143 hasConcept C2778538070 @default.
- W2937831143 hasConcept C2779226451 @default.
- W2937831143 hasConcept C31601959 @default.
- W2937831143 hasConcept C41008148 @default.
- W2937831143 hasConcept C52001869 @default.
- W2937831143 hasConcept C66324658 @default.
- W2937831143 hasConcept C71924100 @default.
- W2937831143 hasConcept C81363708 @default.
- W2937831143 hasConceptScore W2937831143C108583219 @default.
- W2937831143 hasConceptScore W2937831143C118552586 @default.
- W2937831143 hasConceptScore W2937831143C119857082 @default.
- W2937831143 hasConceptScore W2937831143C12267149 @default.
- W2937831143 hasConceptScore W2937831143C126838900 @default.
- W2937831143 hasConceptScore W2937831143C143409427 @default.
- W2937831143 hasConceptScore W2937831143C150899416 @default.
- W2937831143 hasConceptScore W2937831143C153180895 @default.
- W2937831143 hasConceptScore W2937831143C154945302 @default.
- W2937831143 hasConceptScore W2937831143C15744967 @default.
- W2937831143 hasConceptScore W2937831143C169760540 @default.
- W2937831143 hasConceptScore W2937831143C205778803 @default.
- W2937831143 hasConceptScore W2937831143C2778538070 @default.
- W2937831143 hasConceptScore W2937831143C2779226451 @default.
- W2937831143 hasConceptScore W2937831143C31601959 @default.
- W2937831143 hasConceptScore W2937831143C41008148 @default.
- W2937831143 hasConceptScore W2937831143C52001869 @default.
- W2937831143 hasConceptScore W2937831143C66324658 @default.
- W2937831143 hasConceptScore W2937831143C71924100 @default.
- W2937831143 hasConceptScore W2937831143C81363708 @default.
- W2937831143 hasIssue "6" @default.
- W2937831143 hasLocation W29378311431 @default.
- W2937831143 hasLocation W29378311432 @default.
- W2937831143 hasOpenAccess W2937831143 @default.
- W2937831143 hasPrimaryLocation W29378311431 @default.