Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937888061> ?p ?o ?g. }
- W2937888061 endingPage "531" @default.
- W2937888061 startingPage "521" @default.
- W2937888061 abstract "Background: Super learning is an ensemble machine learning approach used increasingly as an alternative to classical prediction techniques. When implementing super learning, however, not tuning the hyperparameters of the algorithms in it may adversely affect the performance of the super learner. Methods: In this case study, we used data from a Canadian electronic prescribing system to predict when primary care physicians prescribed antidepressants for indications other than depression. The analysis included 73,576 antidepressant prescriptions and 373 candidate predictors. We derived two super learners: one using tuned hyperparameter values for each machine learning algorithm identified through an iterative grid search procedure and the other using the default values. We compared the performance of the tuned super learner to that of the super learner using default values (“untuned”) and a carefully constructed logistic regression model from a previous analysis. Results: The tuned super learner had a scaled Brier score (R2) of 0.322 (95% [confidence interval] CI = 0.267, 0.362). In comparison, the untuned super learner had a scaled Brier score of 0.309 (95% CI = 0.256, 0.353), corresponding to an efficiency loss of 4% (relative efficiency 0.96; 95% CI = 0.93, 0.99). The previously-derived logistic regression model had a scaled Brier score of 0.307 (95% CI = 0.245, 0.360), corresponding to an efficiency loss of 5% relative to the tuned super learner (relative efficiency 0.95; 95% CI = 0.88, 1.01). Conclusions: In this case study, hyperparameter tuning produced a super learner that performed slightly better than an untuned super learner. Tuning the hyperparameters of individual algorithms in a super learner may help optimize performance." @default.
- W2937888061 created "2019-04-25" @default.
- W2937888061 creator A5027694435 @default.
- W2937888061 creator A5029938799 @default.
- W2937888061 creator A5035438680 @default.
- W2937888061 creator A5058942190 @default.
- W2937888061 creator A5078947431 @default.
- W2937888061 date "2019-07-01" @default.
- W2937888061 modified "2023-10-03" @default.
- W2937888061 title "Can Hyperparameter Tuning Improve the Performance of a Super Learner?" @default.
- W2937888061 cites W124914759 @default.
- W2937888061 cites W1945743190 @default.
- W2937888061 cites W1993793629 @default.
- W2937888061 cites W2011534852 @default.
- W2937888061 cites W2020715522 @default.
- W2937888061 cites W2022137905 @default.
- W2937888061 cites W2073241381 @default.
- W2937888061 cites W2088239637 @default.
- W2937888061 cites W2090312876 @default.
- W2937888061 cites W2090656275 @default.
- W2937888061 cites W2092218554 @default.
- W2937888061 cites W2097360283 @default.
- W2937888061 cites W2102614609 @default.
- W2937888061 cites W2119910794 @default.
- W2937888061 cites W2124200703 @default.
- W2937888061 cites W2150765167 @default.
- W2937888061 cites W2153635508 @default.
- W2937888061 cites W2171860505 @default.
- W2937888061 cites W2274177153 @default.
- W2937888061 cites W2397340449 @default.
- W2937888061 cites W2407212869 @default.
- W2937888061 cites W2549346488 @default.
- W2937888061 cites W2590801043 @default.
- W2937888061 cites W2591465088 @default.
- W2937888061 cites W2605253636 @default.
- W2937888061 cites W2606184753 @default.
- W2937888061 cites W2750268731 @default.
- W2937888061 cites W2753205644 @default.
- W2937888061 cites W2753817451 @default.
- W2937888061 cites W2758156000 @default.
- W2937888061 cites W2763650945 @default.
- W2937888061 cites W2794910998 @default.
- W2937888061 cites W2802963693 @default.
- W2937888061 cites W2911964244 @default.
- W2937888061 cites W4233056867 @default.
- W2937888061 cites W4294541781 @default.
- W2937888061 cites W6759724 @default.
- W2937888061 doi "https://doi.org/10.1097/ede.0000000000001027" @default.
- W2937888061 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6553550" @default.
- W2937888061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30985529" @default.
- W2937888061 hasPublicationYear "2019" @default.
- W2937888061 type Work @default.
- W2937888061 sameAs 2937888061 @default.
- W2937888061 citedByCount "30" @default.
- W2937888061 countsByYear W29378880612020 @default.
- W2937888061 countsByYear W29378880612021 @default.
- W2937888061 countsByYear W29378880612022 @default.
- W2937888061 countsByYear W29378880612023 @default.
- W2937888061 crossrefType "journal-article" @default.
- W2937888061 hasAuthorship W2937888061A5027694435 @default.
- W2937888061 hasAuthorship W2937888061A5029938799 @default.
- W2937888061 hasAuthorship W2937888061A5035438680 @default.
- W2937888061 hasAuthorship W2937888061A5058942190 @default.
- W2937888061 hasAuthorship W2937888061A5078947431 @default.
- W2937888061 hasBestOaLocation W29378880611 @default.
- W2937888061 hasConcept C10485038 @default.
- W2937888061 hasConcept C105795698 @default.
- W2937888061 hasConcept C119857082 @default.
- W2937888061 hasConcept C12267149 @default.
- W2937888061 hasConcept C151956035 @default.
- W2937888061 hasConcept C154945302 @default.
- W2937888061 hasConcept C33923547 @default.
- W2937888061 hasConcept C35405484 @default.
- W2937888061 hasConcept C41008148 @default.
- W2937888061 hasConcept C44249647 @default.
- W2937888061 hasConcept C83546350 @default.
- W2937888061 hasConcept C8642999 @default.
- W2937888061 hasConceptScore W2937888061C10485038 @default.
- W2937888061 hasConceptScore W2937888061C105795698 @default.
- W2937888061 hasConceptScore W2937888061C119857082 @default.
- W2937888061 hasConceptScore W2937888061C12267149 @default.
- W2937888061 hasConceptScore W2937888061C151956035 @default.
- W2937888061 hasConceptScore W2937888061C154945302 @default.
- W2937888061 hasConceptScore W2937888061C33923547 @default.
- W2937888061 hasConceptScore W2937888061C35405484 @default.
- W2937888061 hasConceptScore W2937888061C41008148 @default.
- W2937888061 hasConceptScore W2937888061C44249647 @default.
- W2937888061 hasConceptScore W2937888061C83546350 @default.
- W2937888061 hasConceptScore W2937888061C8642999 @default.
- W2937888061 hasIssue "4" @default.
- W2937888061 hasLocation W29378880611 @default.
- W2937888061 hasLocation W29378880612 @default.
- W2937888061 hasLocation W29378880613 @default.
- W2937888061 hasLocation W29378880614 @default.
- W2937888061 hasLocation W29378880615 @default.
- W2937888061 hasLocation W29378880616 @default.
- W2937888061 hasOpenAccess W2937888061 @default.
- W2937888061 hasPrimaryLocation W29378880611 @default.