Matches in SemOpenAlex for { <https://semopenalex.org/work/W2937995153> ?p ?o ?g. }
- W2937995153 endingPage "188" @default.
- W2937995153 startingPage "183" @default.
- W2937995153 abstract "Pathologic grading plays a key role in prostate cancer risk stratification and treatment selection, traditionally assessed from systemic core needle biopsies sampled throughout the prostate gland. Multiparametric magnetic resonance imaging (mpMRI) has become a well-established clinical tool for detecting and localizing prostate cancer. However, both pathologic and radiologic assessment suffer from poor reproducibility among readers. Artificial intelligence (AI) methods show promise in aiding the detection and assessment of imaging-based tasks, dependent on the curation of high-quality training sets. This review provides an overview of recent advances in AI applied to mpMRI and digital pathology in prostate cancer which enable advanced characterization of disease through combined radiology-pathology assessment." @default.
- W2937995153 created "2019-04-25" @default.
- W2937995153 creator A5014017269 @default.
- W2937995153 creator A5022455023 @default.
- W2937995153 creator A5058176319 @default.
- W2937995153 creator A5082080836 @default.
- W2937995153 creator A5034104280 @default.
- W2937995153 date "2019-05-16" @default.
- W2937995153 modified "2023-10-12" @default.
- W2937995153 title "Artificial intelligence at the intersection of pathology and radiology in prostate cancer" @default.
- W2937995153 cites W1788831531 @default.
- W2937995153 cites W1806046400 @default.
- W2937995153 cites W1820655337 @default.
- W2937995153 cites W1827911007 @default.
- W2937995153 cites W1971765692 @default.
- W2937995153 cites W1977551372 @default.
- W2937995153 cites W1985357898 @default.
- W2937995153 cites W1993760967 @default.
- W2937995153 cites W2019597341 @default.
- W2937995153 cites W2038264173 @default.
- W2937995153 cites W2044999678 @default.
- W2937995153 cites W2062254183 @default.
- W2937995153 cites W2072738504 @default.
- W2937995153 cites W2075865210 @default.
- W2937995153 cites W2089691539 @default.
- W2937995153 cites W2100762183 @default.
- W2937995153 cites W2104330091 @default.
- W2937995153 cites W2106869018 @default.
- W2937995153 cites W2109923019 @default.
- W2937995153 cites W2110243528 @default.
- W2937995153 cites W2115419491 @default.
- W2937995153 cites W2122402841 @default.
- W2937995153 cites W2124986457 @default.
- W2937995153 cites W2146373036 @default.
- W2937995153 cites W2156398782 @default.
- W2937995153 cites W2156505206 @default.
- W2937995153 cites W2162923066 @default.
- W2937995153 cites W2169555238 @default.
- W2937995153 cites W2171193904 @default.
- W2937995153 cites W221956105 @default.
- W2937995153 cites W2235207347 @default.
- W2937995153 cites W2291725697 @default.
- W2937995153 cites W2334235689 @default.
- W2937995153 cites W2340422569 @default.
- W2937995153 cites W2404945401 @default.
- W2937995153 cites W2408733084 @default.
- W2937995153 cites W2414838486 @default.
- W2937995153 cites W2467451464 @default.
- W2937995153 cites W2547944663 @default.
- W2937995153 cites W2583306764 @default.
- W2937995153 cites W2592069135 @default.
- W2937995153 cites W2598006157 @default.
- W2937995153 cites W2609643239 @default.
- W2937995153 cites W2611049618 @default.
- W2937995153 cites W2611902073 @default.
- W2937995153 cites W2626682118 @default.
- W2937995153 cites W2668608389 @default.
- W2937995153 cites W2748604568 @default.
- W2937995153 cites W2761668583 @default.
- W2937995153 cites W2767431474 @default.
- W2937995153 cites W2775488558 @default.
- W2937995153 cites W2786701104 @default.
- W2937995153 cites W2793905111 @default.
- W2937995153 cites W2796409016 @default.
- W2937995153 cites W2796711585 @default.
- W2937995153 cites W2800781799 @default.
- W2937995153 cites W2800850596 @default.
- W2937995153 cites W2803760365 @default.
- W2937995153 cites W2807469142 @default.
- W2937995153 cites W2808465642 @default.
- W2937995153 cites W2810835704 @default.
- W2937995153 cites W2890821982 @default.
- W2937995153 cites W2891253216 @default.
- W2937995153 cites W2892938835 @default.
- W2937995153 cites W2898020899 @default.
- W2937995153 cites W2902977244 @default.
- W2937995153 cites W2904412814 @default.
- W2937995153 cites W2949226441 @default.
- W2937995153 cites W320681438 @default.
- W2937995153 doi "https://doi.org/10.5152/dir.2019.19125" @default.
- W2937995153 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6521904" @default.
- W2937995153 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31063138" @default.
- W2937995153 hasPublicationYear "2019" @default.
- W2937995153 type Work @default.
- W2937995153 sameAs 2937995153 @default.
- W2937995153 citedByCount "50" @default.
- W2937995153 countsByYear W29379951532019 @default.
- W2937995153 countsByYear W29379951532020 @default.
- W2937995153 countsByYear W29379951532021 @default.
- W2937995153 countsByYear W29379951532022 @default.
- W2937995153 countsByYear W29379951532023 @default.
- W2937995153 crossrefType "journal-article" @default.
- W2937995153 hasAuthorship W2937995153A5014017269 @default.
- W2937995153 hasAuthorship W2937995153A5022455023 @default.
- W2937995153 hasAuthorship W2937995153A5034104280 @default.
- W2937995153 hasAuthorship W2937995153A5058176319 @default.
- W2937995153 hasAuthorship W2937995153A5082080836 @default.
- W2937995153 hasBestOaLocation W29379951532 @default.