Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938072790> ?p ?o ?g. }
- W2938072790 endingPage "101821" @default.
- W2938072790 startingPage "101821" @default.
- W2938072790 abstract "The relationship between stroke topography and functional outcome has largely been studied with binary manual lesion segmentations. However, stroke topography may be better characterized by continuous variables capable of reflecting the severity of ischemia, which may be more pertinent for long-term outcome. Diffusion Tensor Imaging (DTI) constitutes a powerful means of quantifying the degree of acute ischemia and its potential relation to functional outcome. Our aim was to investigate whether using more clinically pertinent imaging parameters with powerful machine learning techniques could improve prediction models and thus provide valuable insight on critical brain areas important for long-term outcome. Eighty-seven thrombolyzed patients underwent a DTI sequence at 24 h post-stroke. Functional outcome was evaluated at 3 months post-stroke with the modified Rankin Score and was dichotomized into good (mRS ≤ 2) and poor (mRS > 2) outcome. We used support vector machines (SVM) to classify patients into good vs. poor outcome and evaluate the accuracy of different models built with fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity asymmetry maps, and lesion segmentations in combination with lesion volume, age, recanalization status, and thrombectomy treatment. SVM classifiers built with axial diffusivity maps yielded the best accuracy of all imaging parameters (median [IQR] accuracy = 82.8 [79.3-86.2]%), compared to that of lesion segmentations (76.7 [73.3-82.8]%) when predicting 3-month functional outcome. The analysis revealed a strong contribution of clinical variables, notably - in descending order - lesion volume, thrombectomy treatment, and recanalization status, in addition to the deep white matter at the crossroads of major white matter tracts, represented by brain regions where model weights were highest. Axial diffusivity is a more appropriate imaging marker to characterize stroke topography for predicting long-term outcome than binary lesion segmentations." @default.
- W2938072790 created "2019-04-25" @default.
- W2938072790 creator A5009243984 @default.
- W2938072790 creator A5029597969 @default.
- W2938072790 creator A5030684365 @default.
- W2938072790 creator A5054255276 @default.
- W2938072790 creator A5071631063 @default.
- W2938072790 date "2019-01-01" @default.
- W2938072790 modified "2023-10-17" @default.
- W2938072790 title "Multivariate prediction of functional outcome using lesion topography characterized by acute diffusion tensor imaging" @default.
- W2938072790 cites W1756031276 @default.
- W2938072790 cites W1785208788 @default.
- W2938072790 cites W1966452916 @default.
- W2938072790 cites W1992100107 @default.
- W2938072790 cites W2006096283 @default.
- W2938072790 cites W2008457785 @default.
- W2938072790 cites W2022530159 @default.
- W2938072790 cites W2033713584 @default.
- W2938072790 cites W2045117329 @default.
- W2938072790 cites W2051239559 @default.
- W2938072790 cites W2056940464 @default.
- W2938072790 cites W2060327991 @default.
- W2938072790 cites W2063001897 @default.
- W2938072790 cites W2070102690 @default.
- W2938072790 cites W2071881327 @default.
- W2938072790 cites W2072735345 @default.
- W2938072790 cites W2078284967 @default.
- W2938072790 cites W2082828440 @default.
- W2938072790 cites W2087940312 @default.
- W2938072790 cites W2096683628 @default.
- W2938072790 cites W2103048292 @default.
- W2938072790 cites W2106658424 @default.
- W2938072790 cites W2120199131 @default.
- W2938072790 cites W2120701355 @default.
- W2938072790 cites W2127309075 @default.
- W2938072790 cites W2135256295 @default.
- W2938072790 cites W2135993898 @default.
- W2938072790 cites W2136573752 @default.
- W2938072790 cites W2142817975 @default.
- W2938072790 cites W2148143831 @default.
- W2938072790 cites W2150148667 @default.
- W2938072790 cites W2151591509 @default.
- W2938072790 cites W2151962970 @default.
- W2938072790 cites W2153813326 @default.
- W2938072790 cites W2153857579 @default.
- W2938072790 cites W2158262458 @default.
- W2938072790 cites W2162295970 @default.
- W2938072790 cites W2164284286 @default.
- W2938072790 cites W2165695714 @default.
- W2938072790 cites W2171165037 @default.
- W2938072790 cites W2177917702 @default.
- W2938072790 cites W2178067959 @default.
- W2938072790 cites W2298593819 @default.
- W2938072790 cites W2346306713 @default.
- W2938072790 cites W2421101021 @default.
- W2938072790 cites W2470259419 @default.
- W2938072790 cites W2472295098 @default.
- W2938072790 cites W2481767376 @default.
- W2938072790 cites W2498250418 @default.
- W2938072790 cites W2508982726 @default.
- W2938072790 cites W2611809509 @default.
- W2938072790 cites W2672900172 @default.
- W2938072790 cites W2790199291 @default.
- W2938072790 cites W2795824182 @default.
- W2938072790 cites W2885873321 @default.
- W2938072790 cites W2963389298 @default.
- W2938072790 cites W3105164764 @default.
- W2938072790 doi "https://doi.org/10.1016/j.nicl.2019.101821" @default.
- W2938072790 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6462821" @default.
- W2938072790 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30991303" @default.
- W2938072790 hasPublicationYear "2019" @default.
- W2938072790 type Work @default.
- W2938072790 sameAs 2938072790 @default.
- W2938072790 citedByCount "17" @default.
- W2938072790 countsByYear W29380727902019 @default.
- W2938072790 countsByYear W29380727902020 @default.
- W2938072790 countsByYear W29380727902021 @default.
- W2938072790 countsByYear W29380727902022 @default.
- W2938072790 countsByYear W29380727902023 @default.
- W2938072790 crossrefType "journal-article" @default.
- W2938072790 hasAuthorship W2938072790A5009243984 @default.
- W2938072790 hasAuthorship W2938072790A5029597969 @default.
- W2938072790 hasAuthorship W2938072790A5030684365 @default.
- W2938072790 hasAuthorship W2938072790A5054255276 @default.
- W2938072790 hasAuthorship W2938072790A5071631063 @default.
- W2938072790 hasBestOaLocation W29380727901 @default.
- W2938072790 hasConcept C126322002 @default.
- W2938072790 hasConcept C126838900 @default.
- W2938072790 hasConcept C127413603 @default.
- W2938072790 hasConcept C141071460 @default.
- W2938072790 hasConcept C143409427 @default.
- W2938072790 hasConcept C144237770 @default.
- W2938072790 hasConcept C148220186 @default.
- W2938072790 hasConcept C149550507 @default.
- W2938072790 hasConcept C164705383 @default.
- W2938072790 hasConcept C2780645631 @default.
- W2938072790 hasConcept C2780931571 @default.
- W2938072790 hasConcept C2781156865 @default.