Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938084527> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2938084527 abstract "One way to extract patterns from clinical records is to consider each patient record as a bag with various number of instances in the form of symptoms. Medical diagnosis is to discover informative ones first and then map them to one or more diseases. In many cases, patients are represented as vectors in some feature space and a classifier is applied after to generate diagnosis results. However, in many real-world cases, data is often of low-quality due to a variety of reasons, such as data consistency, integrity, completeness, accuracy, etc. In this paper, we propose a novel approach, attention based multi-instance neural network (AMI-Net), to make the single disease classification only based on the existing and valid information in the real-world outpatient records. In the context of a patient, it takes a bag of instances as input and output the bag label directly in end-to-end way. Embedding layer is adopted at the beginning, mapping instances into an embedding space which represents the individual patient condition. The correlations among instances and their importance for the final classification are captured by multi-head attention transformer, instance-level multi-instance pooling and bag-level multi-instance pooling. The proposed approach was test on two non-standardized and highly imbalanced datasets, one in the Traditional Chinese Medicine (TCM) domain and the other in the Western Medicine (WM) domain. Our preliminary results show that the proposed approach outperforms all baselines results by a significant margin." @default.
- W2938084527 created "2019-04-25" @default.
- W2938084527 creator A5003933623 @default.
- W2938084527 creator A5034597557 @default.
- W2938084527 creator A5063787253 @default.
- W2938084527 creator A5085086413 @default.
- W2938084527 date "2019-04-09" @default.
- W2938084527 modified "2023-09-24" @default.
- W2938084527 title "Attention-based Multi-instance Neural Network for Medical Diagnosis from Incomplete and Low Quality Data" @default.
- W2938084527 cites W1482608529 @default.
- W2938084527 cites W1514535095 @default.
- W2938084527 cites W1517032997 @default.
- W2938084527 cites W1930624869 @default.
- W2938084527 cites W2105497545 @default.
- W2938084527 cites W2107143555 @default.
- W2938084527 cites W2108745803 @default.
- W2938084527 cites W2110119381 @default.
- W2938084527 cites W2125479168 @default.
- W2938084527 cites W2140494000 @default.
- W2938084527 cites W2149648623 @default.
- W2938084527 cites W2194775991 @default.
- W2938084527 cites W2470673105 @default.
- W2938084527 cites W2531692255 @default.
- W2938084527 cites W2531897166 @default.
- W2938084527 cites W2560609797 @default.
- W2938084527 cites W2575234791 @default.
- W2938084527 cites W2597655663 @default.
- W2938084527 cites W2607119937 @default.
- W2938084527 cites W2746791238 @default.
- W2938084527 cites W2768919623 @default.
- W2938084527 cites W2785934082 @default.
- W2938084527 cites W2792424406 @default.
- W2938084527 cites W2806530836 @default.
- W2938084527 cites W2949426950 @default.
- W2938084527 cites W2963021258 @default.
- W2938084527 cites W2963403868 @default.
- W2938084527 cites W2963560594 @default.
- W2938084527 cites W2963970792 @default.
- W2938084527 cites W2964189376 @default.
- W2938084527 cites W2107103981 @default.
- W2938084527 doi "https://doi.org/10.48550/arxiv.1904.04460" @default.
- W2938084527 hasPublicationYear "2019" @default.
- W2938084527 type Work @default.
- W2938084527 sameAs 2938084527 @default.
- W2938084527 citedByCount "3" @default.
- W2938084527 countsByYear W29380845272019 @default.
- W2938084527 countsByYear W29380845272021 @default.
- W2938084527 crossrefType "posted-content" @default.
- W2938084527 hasAuthorship W2938084527A5003933623 @default.
- W2938084527 hasAuthorship W2938084527A5034597557 @default.
- W2938084527 hasAuthorship W2938084527A5063787253 @default.
- W2938084527 hasAuthorship W2938084527A5085086413 @default.
- W2938084527 hasBestOaLocation W29380845271 @default.
- W2938084527 hasConcept C119857082 @default.
- W2938084527 hasConcept C124101348 @default.
- W2938084527 hasConcept C153180895 @default.
- W2938084527 hasConcept C154945302 @default.
- W2938084527 hasConcept C41008148 @default.
- W2938084527 hasConcept C41608201 @default.
- W2938084527 hasConcept C50644808 @default.
- W2938084527 hasConcept C70437156 @default.
- W2938084527 hasConcept C774472 @default.
- W2938084527 hasConcept C95623464 @default.
- W2938084527 hasConceptScore W2938084527C119857082 @default.
- W2938084527 hasConceptScore W2938084527C124101348 @default.
- W2938084527 hasConceptScore W2938084527C153180895 @default.
- W2938084527 hasConceptScore W2938084527C154945302 @default.
- W2938084527 hasConceptScore W2938084527C41008148 @default.
- W2938084527 hasConceptScore W2938084527C41608201 @default.
- W2938084527 hasConceptScore W2938084527C50644808 @default.
- W2938084527 hasConceptScore W2938084527C70437156 @default.
- W2938084527 hasConceptScore W2938084527C774472 @default.
- W2938084527 hasConceptScore W2938084527C95623464 @default.
- W2938084527 hasLocation W29380845271 @default.
- W2938084527 hasOpenAccess W2938084527 @default.
- W2938084527 hasPrimaryLocation W29380845271 @default.
- W2938084527 hasRelatedWork W2107131697 @default.
- W2938084527 hasRelatedWork W2129933262 @default.
- W2938084527 hasRelatedWork W2167146493 @default.
- W2938084527 hasRelatedWork W2341061681 @default.
- W2938084527 hasRelatedWork W2582016711 @default.
- W2938084527 hasRelatedWork W2950626649 @default.
- W2938084527 hasRelatedWork W3000648255 @default.
- W2938084527 hasRelatedWork W3097056957 @default.
- W2938084527 hasRelatedWork W4280559665 @default.
- W2938084527 hasRelatedWork W2564971937 @default.
- W2938084527 isParatext "false" @default.
- W2938084527 isRetracted "false" @default.
- W2938084527 magId "2938084527" @default.
- W2938084527 workType "article" @default.