Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938193670> ?p ?o ?g. }
- W2938193670 endingPage "481" @default.
- W2938193670 startingPage "470" @default.
- W2938193670 abstract "Biometric identification (BI) of individuals is a fast-growing field of research that is producing increasingly sophisticated applications in several spheres of everyday life. Previous magnetic resonance imaging (MRI) studies have demonstrated that based on the high inter-individual variability of brain structure and function, it is possible to identify individuals with high accuracy. Otherwise, there is the common belief that electroencephalographic (EEG) data recorded at the surface of the scalp are too noisy for identification purposes with a comparably high hit rate. In the present work, we compared BI quality (F1-scores, accuracy, sensitivity, and specificity) between different types of functional (instantaneous, lagged, and total coherence, phase synchronization, correlation, and mutual information) and effective (Granger causality, phase synchronization, and coherence) connectivity measures. Results revealed that across functional connectivity metrics, identification accuracy was in the range of 0.98-1, whereas sensitivity and F1-scores were between 0.00 and 1 and specificity was between 0.99 and 1. BI was higher for the connectivity metrics that are contaminated by volume conduction (instantaneous connectivity) compared to those that are unaffected by this variable (lagged connectivity). Support vector machine and neural network algorithms yielded the highest BI, followed by random forest and weighted k-nearest neighborhood, whereas linear discriminant analysis was less accurate. These results provide cross-validated counterevidence to the belief that EEG data are too noisy for identification purposes and demonstrate that functional and effective connectivity metrics are particularly suited for BI applications with comparable accuracy to MRI. Our results have important implications for fast, low-cost, and mobile BI applications." @default.
- W2938193670 created "2019-04-25" @default.
- W2938193670 creator A5001601313 @default.
- W2938193670 creator A5032741510 @default.
- W2938193670 creator A5053676944 @default.
- W2938193670 creator A5087124510 @default.
- W2938193670 date "2019-08-01" @default.
- W2938193670 modified "2023-10-18" @default.
- W2938193670 title "Decrypting the electrophysiological individuality of the human brain: Identification of individuals based on resting-state EEG activity" @default.
- W2938193670 cites W1485185474 @default.
- W2938193670 cites W1582880486 @default.
- W2938193670 cites W1827261456 @default.
- W2938193670 cites W1907418661 @default.
- W2938193670 cites W1975766767 @default.
- W2938193670 cites W1979901771 @default.
- W2938193670 cites W1980466696 @default.
- W2938193670 cites W1989155160 @default.
- W2938193670 cites W1994828917 @default.
- W2938193670 cites W1994992196 @default.
- W2938193670 cites W1996687698 @default.
- W2938193670 cites W2003689160 @default.
- W2938193670 cites W2006544565 @default.
- W2938193670 cites W2016876321 @default.
- W2938193670 cites W2023509927 @default.
- W2938193670 cites W2055720436 @default.
- W2938193670 cites W206280282 @default.
- W2938193670 cites W2070230130 @default.
- W2938193670 cites W2072728969 @default.
- W2938193670 cites W2075545465 @default.
- W2938193670 cites W2080475243 @default.
- W2938193670 cites W2092068573 @default.
- W2938193670 cites W2095114636 @default.
- W2938193670 cites W2097780812 @default.
- W2938193670 cites W2100673126 @default.
- W2938193670 cites W2109662877 @default.
- W2938193670 cites W2111096018 @default.
- W2938193670 cites W2116768936 @default.
- W2938193670 cites W2122111042 @default.
- W2938193670 cites W2130031954 @default.
- W2938193670 cites W2131869962 @default.
- W2938193670 cites W2134577338 @default.
- W2938193670 cites W2147147911 @default.
- W2938193670 cites W2148992219 @default.
- W2938193670 cites W2150364599 @default.
- W2938193670 cites W2153923516 @default.
- W2938193670 cites W2168638316 @default.
- W2938193670 cites W2168647817 @default.
- W2938193670 cites W2169021094 @default.
- W2938193670 cites W2227520796 @default.
- W2938193670 cites W2250798172 @default.
- W2938193670 cites W2320432016 @default.
- W2938193670 cites W2341614611 @default.
- W2938193670 cites W2421002166 @default.
- W2938193670 cites W2560012305 @default.
- W2938193670 cites W2562380779 @default.
- W2938193670 cites W2742434927 @default.
- W2938193670 cites W2762539579 @default.
- W2938193670 cites W2771169143 @default.
- W2938193670 cites W2776027343 @default.
- W2938193670 cites W2795809180 @default.
- W2938193670 cites W2911964244 @default.
- W2938193670 cites W2952835181 @default.
- W2938193670 doi "https://doi.org/10.1016/j.neuroimage.2019.04.005" @default.
- W2938193670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30978497" @default.
- W2938193670 hasPublicationYear "2019" @default.
- W2938193670 type Work @default.
- W2938193670 sameAs 2938193670 @default.
- W2938193670 citedByCount "33" @default.
- W2938193670 countsByYear W29381936702019 @default.
- W2938193670 countsByYear W29381936702020 @default.
- W2938193670 countsByYear W29381936702021 @default.
- W2938193670 countsByYear W29381936702022 @default.
- W2938193670 countsByYear W29381936702023 @default.
- W2938193670 crossrefType "journal-article" @default.
- W2938193670 hasAuthorship W2938193670A5001601313 @default.
- W2938193670 hasAuthorship W2938193670A5032741510 @default.
- W2938193670 hasAuthorship W2938193670A5053676944 @default.
- W2938193670 hasAuthorship W2938193670A5087124510 @default.
- W2938193670 hasConcept C105795698 @default.
- W2938193670 hasConcept C116834253 @default.
- W2938193670 hasConcept C119857082 @default.
- W2938193670 hasConcept C120843803 @default.
- W2938193670 hasConcept C12267149 @default.
- W2938193670 hasConcept C127162648 @default.
- W2938193670 hasConcept C127413603 @default.
- W2938193670 hasConcept C129824826 @default.
- W2938193670 hasConcept C153180895 @default.
- W2938193670 hasConcept C154945302 @default.
- W2938193670 hasConcept C15744967 @default.
- W2938193670 hasConcept C169760540 @default.
- W2938193670 hasConcept C194027367 @default.
- W2938193670 hasConcept C21200559 @default.
- W2938193670 hasConcept C21689155 @default.
- W2938193670 hasConcept C24326235 @default.
- W2938193670 hasConcept C2524010 @default.
- W2938193670 hasConcept C2779226451 @default.
- W2938193670 hasConcept C2781181686 @default.
- W2938193670 hasConcept C31258907 @default.