Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938193888> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2938193888 abstract "Abstract The dynamics of data traffic intensity is examined using traffic measurements at the interface switch input. The wish to prevent failures of trunk line equipment and take the full advantage of network resources makes it necessary to be able to predict the network usage. The research tackles the problem of building a predicting neural-net model of the time sequence of network traffic. Topological data analysis methods are used for data preprocessing. Nonlinear dynamics algorithms are used to choose the neural net architecture. Topological data analysis methods allow the computation of time sequence invariants. The probability function for random field maxima cannot be described analytically. However, computational topology algorithms make it possible to approximate this function using the expected value of Euler’s characteristic defined over a set of peaks. The expected values of Euler’s characteristic are found by constructing persistence diagrams and computing barcode lengths. A solution of the problem with the help of R-based libraries is given. The computation of Euler’s characteristics allows us to divide the whole data set into several uniform subsets. Predicting neural-net models are built for each of such subsets. Whitney and Takens theorems are used for determining the architecture of the sought-for neural net model. According to these theorems, the associative properties of a mathematical model depend on how accurate the dimensionality of the dynamic system is defined. The sub-problem is solved using nonlinear dynamics algorithms and calculating the correlation integral. The goal of the research is to provide ways to secure the effective transmission of data packets." @default.
- W2938193888 created "2019-04-25" @default.
- W2938193888 creator A5008423893 @default.
- W2938193888 date "2019-01-01" @default.
- W2938193888 modified "2023-09-24" @default.
- W2938193888 title "Construction a Neural-Net Model of Network Traffic Using the Topologic Analysis of Its Time Series Complexity" @default.
- W2938193888 cites W2038340293 @default.
- W2938193888 cites W2103414083 @default.
- W2938193888 cites W2124776405 @default.
- W2938193888 cites W3013843370 @default.
- W2938193888 doi "https://doi.org/10.1016/j.procs.2019.02.079" @default.
- W2938193888 hasPublicationYear "2019" @default.
- W2938193888 type Work @default.
- W2938193888 sameAs 2938193888 @default.
- W2938193888 citedByCount "0" @default.
- W2938193888 crossrefType "journal-article" @default.
- W2938193888 hasAuthorship W2938193888A5008423893 @default.
- W2938193888 hasBestOaLocation W29381938881 @default.
- W2938193888 hasConcept C11413529 @default.
- W2938193888 hasConcept C121332964 @default.
- W2938193888 hasConcept C154945302 @default.
- W2938193888 hasConcept C158622935 @default.
- W2938193888 hasConcept C41008148 @default.
- W2938193888 hasConcept C50644808 @default.
- W2938193888 hasConcept C62520636 @default.
- W2938193888 hasConcept C80444323 @default.
- W2938193888 hasConceptScore W2938193888C11413529 @default.
- W2938193888 hasConceptScore W2938193888C121332964 @default.
- W2938193888 hasConceptScore W2938193888C154945302 @default.
- W2938193888 hasConceptScore W2938193888C158622935 @default.
- W2938193888 hasConceptScore W2938193888C41008148 @default.
- W2938193888 hasConceptScore W2938193888C50644808 @default.
- W2938193888 hasConceptScore W2938193888C62520636 @default.
- W2938193888 hasConceptScore W2938193888C80444323 @default.
- W2938193888 hasLocation W29381938881 @default.
- W2938193888 hasOpenAccess W2938193888 @default.
- W2938193888 hasPrimaryLocation W29381938881 @default.
- W2938193888 hasRelatedWork W1983490764 @default.
- W2938193888 hasRelatedWork W1998476184 @default.
- W2938193888 hasRelatedWork W2058532765 @default.
- W2938193888 hasRelatedWork W2085619266 @default.
- W2938193888 hasRelatedWork W2090724330 @default.
- W2938193888 hasRelatedWork W2102470794 @default.
- W2938193888 hasRelatedWork W2141975226 @default.
- W2938193888 hasRelatedWork W2221658266 @default.
- W2938193888 hasRelatedWork W2319938074 @default.
- W2938193888 hasRelatedWork W2348092679 @default.
- W2938193888 hasRelatedWork W2368755399 @default.
- W2938193888 hasRelatedWork W2382307523 @default.
- W2938193888 hasRelatedWork W2511693986 @default.
- W2938193888 hasRelatedWork W2766352337 @default.
- W2938193888 hasRelatedWork W2965184053 @default.
- W2938193888 hasRelatedWork W3042756646 @default.
- W2938193888 hasRelatedWork W3169336027 @default.
- W2938193888 hasRelatedWork W34209922 @default.
- W2938193888 hasRelatedWork W650402384 @default.
- W2938193888 hasRelatedWork W2802282433 @default.
- W2938193888 isParatext "false" @default.
- W2938193888 isRetracted "false" @default.
- W2938193888 magId "2938193888" @default.
- W2938193888 workType "article" @default.