Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938205516> ?p ?o ?g. }
- W2938205516 endingPage "1283" @default.
- W2938205516 startingPage "1275" @default.
- W2938205516 abstract "Abstract Laboratory studies have revealed that Daphnia species can evolve to tolerate toxic cyanobacteria in the diet. Specifically, Daphnia from eutrophic lakes where cyanobacteria are common tend to have higher growth rates and survival when fed toxic cyanobacteria than populations from oligotrophic environments with low abundance of cyanobacteria. We conducted an in‐lake mesocosm (i.e. limnocorral) experiment during the autumn of 2009 to assess the effects of nutrient enrichment on clonal evolution in Daphnia pulicaria . As nutrient enrichment often favours grazing‐resistant cyanobacteria, we hypothesised that fertilisation would influence the genotypic composition of D. pulicaria that vary in tolerance to cyanobacteria. Mesocosms were fertilised to manipulate phytoplankton and cyanobacterial abundance and concentrations of a cyanobacterial toxin (microcystin). Thus, half of the mesocosms were high‐nutrient and half were low‐nutrient. We then stocked half of the mesocosms with a mixture of six genetically‐distinct D. pulicaria genotypes (three genotypes from oligotrophic lakes and three from eutrophic lakes) leaving half of the mesocosms Daphnia ‐free to assess grazing effects, using a fully factorial design. When compared to the low nutrient treatment, high nutrient mesocosms had nearly five‐fold higher chlorophyll a concentrations, eight‐fold higher cyanobacterial dry biomass, and three‐fold higher microcystin levels at the start of the experiment. In contrast, low nutrient mesocosms had phytoplankton concentrations typical of mesotrophic lakes. Fertilisation strongly affected Daphnia genetic diversity in the mesocosms. Final Daphnia genotype diversity in the mesocosms with low‐cyanobacteria (richness = 5.83, Shannon–Weiner index = 1.55, evenness = 0.88) was similar to the initial stocked diversity (richness = 5.50, Shannon–Weiner index = 1.48, evenness = 0.87). In contrast, final diversity in fertilised mesocosms with high cyanobacteria was greatly reduced (richness = 2, Shannon–Weiner index = 0.17), with one Daphnia genotype that originated from the most‐eutrophic lake being highly dominant (evenness = 0.25). Thus, eutrophication mediated strong clonal selection of a cyanobacteria‐tolerant Daphnia genotype over just 10 weeks. By the end of the experiment, Daphnia significantly reduced phytoplankton biomass in the high‐nutrient, but not in the low‐nutrient treatment. This difference in effect size was largely driven by the five‐fold higher initial phytoplankton biomass in the high‐nutrient treatment. Thus, the ability of Daphnia to reduce phytoplankton biomass in eutrophic lakes may be driven more so by the abundance of planktivorous fishes, as opposed to the prevalence of cyanobacteria and their associated toxins." @default.
- W2938205516 created "2019-04-25" @default.
- W2938205516 creator A5015122067 @default.
- W2938205516 creator A5018509683 @default.
- W2938205516 creator A5045567639 @default.
- W2938205516 creator A5063349034 @default.
- W2938205516 creator A5067539041 @default.
- W2938205516 date "2019-04-08" @default.
- W2938205516 modified "2023-10-14" @default.
- W2938205516 title "Eutrophication mediates rapid clonal evolution in<i>Daphnia pulicaria</i>" @default.
- W2938205516 cites W1634984597 @default.
- W2938205516 cites W1969055273 @default.
- W2938205516 cites W1972708686 @default.
- W2938205516 cites W1987148902 @default.
- W2938205516 cites W1995033902 @default.
- W2938205516 cites W1997356912 @default.
- W2938205516 cites W2000438267 @default.
- W2938205516 cites W2006553013 @default.
- W2938205516 cites W2016889003 @default.
- W2938205516 cites W2022075620 @default.
- W2938205516 cites W2028198274 @default.
- W2938205516 cites W2030266323 @default.
- W2938205516 cites W2038696731 @default.
- W2938205516 cites W2047286451 @default.
- W2938205516 cites W2064359817 @default.
- W2938205516 cites W2066001094 @default.
- W2938205516 cites W2066579884 @default.
- W2938205516 cites W2070484896 @default.
- W2938205516 cites W2090848604 @default.
- W2938205516 cites W2096720384 @default.
- W2938205516 cites W2099524058 @default.
- W2938205516 cites W2101058852 @default.
- W2938205516 cites W2101166680 @default.
- W2938205516 cites W2102342388 @default.
- W2938205516 cites W2107128179 @default.
- W2938205516 cites W2110514190 @default.
- W2938205516 cites W2113162751 @default.
- W2938205516 cites W2119258765 @default.
- W2938205516 cites W2120162478 @default.
- W2938205516 cites W2120405557 @default.
- W2938205516 cites W2123003906 @default.
- W2938205516 cites W2125924849 @default.
- W2938205516 cites W2128037389 @default.
- W2938205516 cites W2131955039 @default.
- W2938205516 cites W2140321022 @default.
- W2938205516 cites W2145094964 @default.
- W2938205516 cites W2145211517 @default.
- W2938205516 cites W2148242978 @default.
- W2938205516 cites W2148413932 @default.
- W2938205516 cites W2151500104 @default.
- W2938205516 cites W2155684503 @default.
- W2938205516 cites W2162701000 @default.
- W2938205516 cites W2164364925 @default.
- W2938205516 cites W2164742960 @default.
- W2938205516 cites W2169375600 @default.
- W2938205516 cites W2174156150 @default.
- W2938205516 cites W2253049904 @default.
- W2938205516 cites W2360752271 @default.
- W2938205516 cites W2503109891 @default.
- W2938205516 cites W2560329400 @default.
- W2938205516 cites W2588170402 @default.
- W2938205516 cites W2599512886 @default.
- W2938205516 cites W2610637178 @default.
- W2938205516 cites W2612027158 @default.
- W2938205516 cites W2615345851 @default.
- W2938205516 cites W2743485204 @default.
- W2938205516 cites W2770873776 @default.
- W2938205516 cites W2771732988 @default.
- W2938205516 cites W4302607898 @default.
- W2938205516 doi "https://doi.org/10.1111/fwb.13303" @default.
- W2938205516 hasPublicationYear "2019" @default.
- W2938205516 type Work @default.
- W2938205516 sameAs 2938205516 @default.
- W2938205516 citedByCount "10" @default.
- W2938205516 countsByYear W29382055162021 @default.
- W2938205516 countsByYear W29382055162022 @default.
- W2938205516 countsByYear W29382055162023 @default.
- W2938205516 crossrefType "journal-article" @default.
- W2938205516 hasAuthorship W2938205516A5015122067 @default.
- W2938205516 hasAuthorship W2938205516A5018509683 @default.
- W2938205516 hasAuthorship W2938205516A5045567639 @default.
- W2938205516 hasAuthorship W2938205516A5063349034 @default.
- W2938205516 hasAuthorship W2938205516A5067539041 @default.
- W2938205516 hasBestOaLocation W29382055161 @default.
- W2938205516 hasConcept C142796444 @default.
- W2938205516 hasConcept C158836135 @default.
- W2938205516 hasConcept C180553826 @default.
- W2938205516 hasConcept C186699998 @default.
- W2938205516 hasConcept C18903297 @default.
- W2938205516 hasConcept C2776056151 @default.
- W2938205516 hasConcept C2778208666 @default.
- W2938205516 hasConcept C2779651202 @default.
- W2938205516 hasConcept C2779669040 @default.
- W2938205516 hasConcept C2780187675 @default.
- W2938205516 hasConcept C2780892065 @default.
- W2938205516 hasConcept C523546767 @default.
- W2938205516 hasConcept C54355233 @default.
- W2938205516 hasConcept C59822182 @default.