Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938232807> ?p ?o ?g. }
- W2938232807 endingPage "154" @default.
- W2938232807 startingPage "137" @default.
- W2938232807 abstract "Abstract Recent research has shown that a reliable vector autoregression (VAR) for forecasting and structural analysis of macroeconomic data requires a large set of variables and modeling time variation in their volatilities. Yet, there are no papers that provide a general solution for combining these features, due to computational complexity. Moreover, homoskedastic Bayesian VARs for large data sets so far restrict substantially the allowed prior distributions on the parameters. In this paper we propose a new Bayesian estimation procedure for (possibly very large) VARs featuring time-varying volatilities and general priors. We show that indeed empirically the new estimation procedure performs well in applications to both structural analysis and out-of-sample forecasting." @default.
- W2938232807 created "2019-04-25" @default.
- W2938232807 creator A5065544496 @default.
- W2938232807 creator A5070248488 @default.
- W2938232807 creator A5082187758 @default.
- W2938232807 date "2019-09-01" @default.
- W2938232807 modified "2023-10-17" @default.
- W2938232807 title "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors" @default.
- W2938232807 cites W1518940614 @default.
- W2938232807 cites W1546358021 @default.
- W2938232807 cites W1586811655 @default.
- W2938232807 cites W1985789769 @default.
- W2938232807 cites W2007694684 @default.
- W2938232807 cites W2029202224 @default.
- W2938232807 cites W2031035075 @default.
- W2938232807 cites W2043889612 @default.
- W2938232807 cites W2046357557 @default.
- W2938232807 cites W2049897094 @default.
- W2938232807 cites W2056186894 @default.
- W2938232807 cites W2062510159 @default.
- W2938232807 cites W2064236909 @default.
- W2938232807 cites W2079672223 @default.
- W2938232807 cites W2093869672 @default.
- W2938232807 cites W2098588523 @default.
- W2938232807 cites W2099036148 @default.
- W2938232807 cites W2105674376 @default.
- W2938232807 cites W2113422836 @default.
- W2938232807 cites W2119327830 @default.
- W2938232807 cites W2137793844 @default.
- W2938232807 cites W2148557226 @default.
- W2938232807 cites W2257263437 @default.
- W2938232807 cites W2269688920 @default.
- W2938232807 cites W2345751744 @default.
- W2938232807 cites W2545951854 @default.
- W2938232807 cites W2890538235 @default.
- W2938232807 cites W2945923981 @default.
- W2938232807 cites W3121748989 @default.
- W2938232807 cites W3122475708 @default.
- W2938232807 cites W3123530756 @default.
- W2938232807 cites W3124444187 @default.
- W2938232807 cites W3125162238 @default.
- W2938232807 doi "https://doi.org/10.1016/j.jeconom.2019.04.024" @default.
- W2938232807 hasPublicationYear "2019" @default.
- W2938232807 type Work @default.
- W2938232807 sameAs 2938232807 @default.
- W2938232807 citedByCount "127" @default.
- W2938232807 countsByYear W29382328072018 @default.
- W2938232807 countsByYear W29382328072019 @default.
- W2938232807 countsByYear W29382328072020 @default.
- W2938232807 countsByYear W29382328072021 @default.
- W2938232807 countsByYear W29382328072022 @default.
- W2938232807 countsByYear W29382328072023 @default.
- W2938232807 crossrefType "journal-article" @default.
- W2938232807 hasAuthorship W2938232807A5065544496 @default.
- W2938232807 hasAuthorship W2938232807A5070248488 @default.
- W2938232807 hasAuthorship W2938232807A5082187758 @default.
- W2938232807 hasBestOaLocation W29382328072 @default.
- W2938232807 hasConcept C105795698 @default.
- W2938232807 hasConcept C107673813 @default.
- W2938232807 hasConcept C137703641 @default.
- W2938232807 hasConcept C149782125 @default.
- W2938232807 hasConcept C162324750 @default.
- W2938232807 hasConcept C177769412 @default.
- W2938232807 hasConcept C187625094 @default.
- W2938232807 hasConcept C26004113 @default.
- W2938232807 hasConcept C28826006 @default.
- W2938232807 hasConcept C33923547 @default.
- W2938232807 hasConcept C85393063 @default.
- W2938232807 hasConcept C91602232 @default.
- W2938232807 hasConceptScore W2938232807C105795698 @default.
- W2938232807 hasConceptScore W2938232807C107673813 @default.
- W2938232807 hasConceptScore W2938232807C137703641 @default.
- W2938232807 hasConceptScore W2938232807C149782125 @default.
- W2938232807 hasConceptScore W2938232807C162324750 @default.
- W2938232807 hasConceptScore W2938232807C177769412 @default.
- W2938232807 hasConceptScore W2938232807C187625094 @default.
- W2938232807 hasConceptScore W2938232807C26004113 @default.
- W2938232807 hasConceptScore W2938232807C28826006 @default.
- W2938232807 hasConceptScore W2938232807C33923547 @default.
- W2938232807 hasConceptScore W2938232807C85393063 @default.
- W2938232807 hasConceptScore W2938232807C91602232 @default.
- W2938232807 hasFunder F4320334630 @default.
- W2938232807 hasIssue "1" @default.
- W2938232807 hasLocation W29382328071 @default.
- W2938232807 hasLocation W29382328072 @default.
- W2938232807 hasLocation W29382328073 @default.
- W2938232807 hasOpenAccess W2938232807 @default.
- W2938232807 hasPrimaryLocation W29382328071 @default.
- W2938232807 hasRelatedWork W1487804950 @default.
- W2938232807 hasRelatedWork W157463627 @default.
- W2938232807 hasRelatedWork W1966453996 @default.
- W2938232807 hasRelatedWork W2016063940 @default.
- W2938232807 hasRelatedWork W2093647618 @default.
- W2938232807 hasRelatedWork W2475237729 @default.
- W2938232807 hasRelatedWork W2938232807 @default.
- W2938232807 hasRelatedWork W3084136375 @default.
- W2938232807 hasRelatedWork W3110797678 @default.
- W2938232807 hasRelatedWork W3125733047 @default.