Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938240210> ?p ?o ?g. }
- W2938240210 endingPage "208" @default.
- W2938240210 startingPage "201" @default.
- W2938240210 abstract "We compared the performance of different Deep learning-convolutional neural network (DL-CNN) models for bladder cancer treatment response assessment based on transfer learning by freezing different DL-CNN layers and varying the DL-CNN structure. Pre- and posttreatment computed tomography scans of 123 patients (cancers, 129; pre- and posttreatment cancer pairs, 158) undergoing chemotherapy were collected. After chemotherapy 33% of patients had T0 stage cancer (complete response). Regions of interest in pre- and posttreatment scans were extracted from the segmented lesions and combined into hybrid pre -post image pairs (h-ROIs). Training (pairs, 94; h-ROIs, 6209), validation (10 pairs) and test sets (54 pairs) were obtained. The DL-CNN consisted of 2 convolution (C1-C2), 2 locally connected (L3-L4), and 1 fully connected layers. The DL-CNN was trained with h-ROIs to classify cancers as fully responding (stage T0) or not fully responding to chemotherapy. Two radiologists provided lesion likelihood of being stage T0 posttreatment. The test area under the ROC curve (AUC) was 0.73 for T0 prediction by the base DL-CNN structure with randomly initialized weights. The base DL-CNN structure with pretrained weights and transfer learning (no frozen layers) achieved test AUC of 0.79. The test AUCs for 3 modified DL-CNN structures (different C1-C2 max pooling filter sizes, strides, and padding, with transfer learning) were 0.72, 0.86, and 0.69. For the base DL-CNN with (C1) frozen, (C1-C2) frozen, and (C1-C2-L3) frozen, the test AUCs were 0.81, 0.78, and 0.71, respectively. The radiologists' AUCs were 0.76 and 0.77. DL-CNN performed better with pretrained than randomly initialized weights." @default.
- W2938240210 created "2019-04-25" @default.
- W2938240210 creator A5002172019 @default.
- W2938240210 creator A5018208869 @default.
- W2938240210 creator A5019785665 @default.
- W2938240210 creator A5022051736 @default.
- W2938240210 creator A5027247097 @default.
- W2938240210 creator A5037712788 @default.
- W2938240210 creator A5044876102 @default.
- W2938240210 creator A5045764453 @default.
- W2938240210 creator A5045832765 @default.
- W2938240210 creator A5068582788 @default.
- W2938240210 creator A5089194015 @default.
- W2938240210 date "2019-03-01" @default.
- W2938240210 modified "2023-10-16" @default.
- W2938240210 title "Deep Learning Approach for Assessment of Bladder Cancer Treatment Response" @default.
- W2938240210 cites W1514810570 @default.
- W2938240210 cites W1975918912 @default.
- W2938240210 cites W1990282709 @default.
- W2938240210 cites W2039593066 @default.
- W2938240210 cites W2051762085 @default.
- W2938240210 cites W2076063813 @default.
- W2938240210 cites W2168846224 @default.
- W2938240210 cites W2188550107 @default.
- W2938240210 cites W2253429366 @default.
- W2938240210 cites W2398135534 @default.
- W2938240210 cites W2414736926 @default.
- W2938240210 cites W2510224130 @default.
- W2938240210 cites W2559553341 @default.
- W2938240210 cites W2592929672 @default.
- W2938240210 cites W2746549795 @default.
- W2938240210 cites W2767016695 @default.
- W2938240210 cites W2892235178 @default.
- W2938240210 cites W2919115771 @default.
- W2938240210 doi "https://doi.org/10.18383/j.tom.2018.00036" @default.
- W2938240210 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6403041" @default.
- W2938240210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30854458" @default.
- W2938240210 hasPublicationYear "2019" @default.
- W2938240210 type Work @default.
- W2938240210 sameAs 2938240210 @default.
- W2938240210 citedByCount "37" @default.
- W2938240210 countsByYear W29382402102019 @default.
- W2938240210 countsByYear W29382402102020 @default.
- W2938240210 countsByYear W29382402102021 @default.
- W2938240210 countsByYear W29382402102022 @default.
- W2938240210 countsByYear W29382402102023 @default.
- W2938240210 crossrefType "journal-article" @default.
- W2938240210 hasAuthorship W2938240210A5002172019 @default.
- W2938240210 hasAuthorship W2938240210A5018208869 @default.
- W2938240210 hasAuthorship W2938240210A5019785665 @default.
- W2938240210 hasAuthorship W2938240210A5022051736 @default.
- W2938240210 hasAuthorship W2938240210A5027247097 @default.
- W2938240210 hasAuthorship W2938240210A5037712788 @default.
- W2938240210 hasAuthorship W2938240210A5044876102 @default.
- W2938240210 hasAuthorship W2938240210A5045764453 @default.
- W2938240210 hasAuthorship W2938240210A5045832765 @default.
- W2938240210 hasAuthorship W2938240210A5068582788 @default.
- W2938240210 hasAuthorship W2938240210A5089194015 @default.
- W2938240210 hasBestOaLocation W29382402101 @default.
- W2938240210 hasConcept C108583219 @default.
- W2938240210 hasConcept C121608353 @default.
- W2938240210 hasConcept C126322002 @default.
- W2938240210 hasConcept C126838900 @default.
- W2938240210 hasConcept C146357865 @default.
- W2938240210 hasConcept C150899416 @default.
- W2938240210 hasConcept C151730666 @default.
- W2938240210 hasConcept C153180895 @default.
- W2938240210 hasConcept C154945302 @default.
- W2938240210 hasConcept C2780352672 @default.
- W2938240210 hasConcept C2989005 @default.
- W2938240210 hasConcept C41008148 @default.
- W2938240210 hasConcept C58471807 @default.
- W2938240210 hasConcept C71924100 @default.
- W2938240210 hasConcept C76318530 @default.
- W2938240210 hasConcept C81363708 @default.
- W2938240210 hasConcept C86803240 @default.
- W2938240210 hasConceptScore W2938240210C108583219 @default.
- W2938240210 hasConceptScore W2938240210C121608353 @default.
- W2938240210 hasConceptScore W2938240210C126322002 @default.
- W2938240210 hasConceptScore W2938240210C126838900 @default.
- W2938240210 hasConceptScore W2938240210C146357865 @default.
- W2938240210 hasConceptScore W2938240210C150899416 @default.
- W2938240210 hasConceptScore W2938240210C151730666 @default.
- W2938240210 hasConceptScore W2938240210C153180895 @default.
- W2938240210 hasConceptScore W2938240210C154945302 @default.
- W2938240210 hasConceptScore W2938240210C2780352672 @default.
- W2938240210 hasConceptScore W2938240210C2989005 @default.
- W2938240210 hasConceptScore W2938240210C41008148 @default.
- W2938240210 hasConceptScore W2938240210C58471807 @default.
- W2938240210 hasConceptScore W2938240210C71924100 @default.
- W2938240210 hasConceptScore W2938240210C76318530 @default.
- W2938240210 hasConceptScore W2938240210C81363708 @default.
- W2938240210 hasConceptScore W2938240210C86803240 @default.
- W2938240210 hasIssue "1" @default.
- W2938240210 hasLocation W29382402101 @default.
- W2938240210 hasLocation W29382402102 @default.
- W2938240210 hasLocation W29382402103 @default.
- W2938240210 hasLocation W29382402104 @default.