Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938260698> ?p ?o ?g. }
- W2938260698 endingPage "3259" @default.
- W2938260698 startingPage "3239" @default.
- W2938260698 abstract "As an essential problem in computer vision, salient object detection (SOD) has attracted an increasing amount of research attention over the years. Recent advances in SOD are predominantly led by deep learning-based solutions (named deep SOD). To enable in-depth understanding of deep SOD, in this paper, we provide a comprehensive survey covering various aspects, ranging from algorithm taxonomy to unsolved issues. In particular, we first review deep SOD algorithms from different perspectives, including network architecture, level of supervision, learning paradigm, and object-/instance-level detection. Following that, we summarize and analyze existing SOD datasets and evaluation metrics. Then, we benchmark a large group of representative SOD models, and provide detailed analyses of the comparison results. Moreover, we study the performance of SOD algorithms under different attribute settings, which has not been thoroughly explored previously, by constructing a novel SOD dataset with rich attribute annotations covering various salient object types, challenging factors, and scene categories. We further analyze, for the first time in the field, the robustness of SOD models to random input perturbations and adversarial attacks. We also look into the generalization and difficulty of existing SOD datasets. Finally, we discuss several open issues of SOD and outline future research directions. All the saliency prediction maps, our constructed dataset with annotations, and codes for evaluation are publicly available at https://github.com/wenguanwang/SODsurvey." @default.
- W2938260698 created "2019-04-25" @default.
- W2938260698 creator A5010970485 @default.
- W2938260698 creator A5023184215 @default.
- W2938260698 creator A5059830795 @default.
- W2938260698 creator A5061469520 @default.
- W2938260698 creator A5062017278 @default.
- W2938260698 creator A5076524203 @default.
- W2938260698 date "2022-06-01" @default.
- W2938260698 modified "2023-10-16" @default.
- W2938260698 title "Salient Object Detection in the Deep Learning Era: An In-Depth Survey" @default.
- W2938260698 cites W143805545 @default.
- W2938260698 cites W1903029394 @default.
- W2938260698 cites W1931639407 @default.
- W2938260698 cites W1934890906 @default.
- W2938260698 cites W1942214758 @default.
- W2938260698 cites W1947031653 @default.
- W2938260698 cites W1954873805 @default.
- W2938260698 cites W1963915657 @default.
- W2938260698 cites W1982075130 @default.
- W2938260698 cites W1991367009 @default.
- W2938260698 cites W1994922096 @default.
- W2938260698 cites W2002781701 @default.
- W2938260698 cites W2006180404 @default.
- W2938260698 cites W2011900468 @default.
- W2938260698 cites W2017814585 @default.
- W2938260698 cites W2029661329 @default.
- W2938260698 cites W2031342017 @default.
- W2938260698 cites W2031489346 @default.
- W2938260698 cites W2033362164 @default.
- W2938260698 cites W2037954058 @default.
- W2938260698 cites W2038210738 @default.
- W2938260698 cites W2038913936 @default.
- W2938260698 cites W2039313011 @default.
- W2938260698 cites W2046835352 @default.
- W2938260698 cites W2047670868 @default.
- W2938260698 cites W2049776679 @default.
- W2938260698 cites W2055136526 @default.
- W2938260698 cites W2055180303 @default.
- W2938260698 cites W20683899 @default.
- W2938260698 cites W2072761058 @default.
- W2938260698 cites W2086775845 @default.
- W2938260698 cites W2086791339 @default.
- W2938260698 cites W2086866337 @default.
- W2938260698 cites W2094786933 @default.
- W2938260698 cites W2098702446 @default.
- W2938260698 cites W2100470808 @default.
- W2938260698 cites W21025885 @default.
- W2938260698 cites W2108598243 @default.
- W2938260698 cites W2115273023 @default.
- W2938260698 cites W2121927366 @default.
- W2938260698 cites W2125378844 @default.
- W2938260698 cites W2128272608 @default.
- W2938260698 cites W2130967830 @default.
- W2938260698 cites W2149095485 @default.
- W2938260698 cites W2157554677 @default.
- W2938260698 cites W2161185676 @default.
- W2938260698 cites W2164084182 @default.
- W2938260698 cites W2171378720 @default.
- W2938260698 cites W2211996548 @default.
- W2938260698 cites W2293332611 @default.
- W2938260698 cites W2294182682 @default.
- W2938260698 cites W2294370754 @default.
- W2938260698 cites W2295107390 @default.
- W2938260698 cites W2300687442 @default.
- W2938260698 cites W2332175535 @default.
- W2938260698 cites W2333080640 @default.
- W2938260698 cites W2338972621 @default.
- W2938260698 cites W2422471819 @default.
- W2938260698 cites W2437041077 @default.
- W2938260698 cites W2461475918 @default.
- W2938260698 cites W2470139095 @default.
- W2938260698 cites W2514658199 @default.
- W2938260698 cites W2519528544 @default.
- W2938260698 cites W2520188835 @default.
- W2938260698 cites W2520274358 @default.
- W2938260698 cites W2585592883 @default.
- W2938260698 cites W2599837529 @default.
- W2938260698 cites W2600144439 @default.
- W2938260698 cites W2604505099 @default.
- W2938260698 cites W2605929543 @default.
- W2938260698 cites W2614855966 @default.
- W2938260698 cites W2740652190 @default.
- W2938260698 cites W2740667773 @default.
- W2938260698 cites W2744613561 @default.
- W2938260698 cites W2754188632 @default.
- W2938260698 cites W2756464018 @default.
- W2938260698 cites W2765103010 @default.
- W2938260698 cites W2772161954 @default.
- W2938260698 cites W2777511827 @default.
- W2938260698 cites W2779744667 @default.
- W2938260698 cites W2780708736 @default.
- W2938260698 cites W2783231089 @default.
- W2938260698 cites W2792965491 @default.
- W2938260698 cites W2793668851 @default.
- W2938260698 cites W2798542376 @default.
- W2938260698 cites W2798715809 @default.
- W2938260698 cites W2798791651 @default.