Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938315078> ?p ?o ?g. }
- W2938315078 abstract "We study the logical and computational properties of basic theorems of uncountable mathematics, in particular Pincherle's theorem, published in 1882. This theorem states that a locally bounded function is bounded on certain domains, i.e. one of the first 'local-to-global' principles. It is well-known that such principles in analysis are intimately connected to (open-cover) compactness, but we nonetheless exhibit fundamental differences between compactness and Pincherle's theorem. For instance, the main question of Reverse Mathematics, namely which set existence axioms are necessary to prove Pincherle's theorem, does not have an unique or unambiguous answer, in contrast to compactness. We establish similar differences for the computational properties of compactness and Pincherle's theorem. We establish the same differences for other local-to-global principles, even going back to Weierstrass. We also greatly sharpen the known computational power of compactness, for the most shared with Pincherle's theorem however. Finally, countable choice plays an important role in the previous, we therefore study this axiom together with the intimately related Lindelof lemma." @default.
- W2938315078 created "2019-04-25" @default.
- W2938315078 creator A5007539743 @default.
- W2938315078 creator A5073669576 @default.
- W2938315078 date "2018-08-29" @default.
- W2938315078 modified "2023-10-18" @default.
- W2938315078 title "Pincherle's theorem in Reverse Mathematics and computability theory" @default.
- W2938315078 cites W1484625174 @default.
- W2938315078 cites W1492163953 @default.
- W2938315078 cites W1507744378 @default.
- W2938315078 cites W1521303164 @default.
- W2938315078 cites W1534797415 @default.
- W2938315078 cites W1538838225 @default.
- W2938315078 cites W1584632423 @default.
- W2938315078 cites W1585950955 @default.
- W2938315078 cites W1590304156 @default.
- W2938315078 cites W1598554753 @default.
- W2938315078 cites W166740865 @default.
- W2938315078 cites W1731159951 @default.
- W2938315078 cites W1761285876 @default.
- W2938315078 cites W1938681473 @default.
- W2938315078 cites W1965991130 @default.
- W2938315078 cites W1980050860 @default.
- W2938315078 cites W1984505680 @default.
- W2938315078 cites W2017523153 @default.
- W2938315078 cites W2021338858 @default.
- W2938315078 cites W2025471791 @default.
- W2938315078 cites W2025592531 @default.
- W2938315078 cites W2030879102 @default.
- W2938315078 cites W2045199616 @default.
- W2938315078 cites W2053029397 @default.
- W2938315078 cites W2074145928 @default.
- W2938315078 cites W2082364592 @default.
- W2938315078 cites W2089230867 @default.
- W2938315078 cites W2097415784 @default.
- W2938315078 cites W2099102402 @default.
- W2938315078 cites W211897558 @default.
- W2938315078 cites W2120940840 @default.
- W2938315078 cites W2156370599 @default.
- W2938315078 cites W2170311001 @default.
- W2938315078 cites W2229732917 @default.
- W2938315078 cites W2339460772 @default.
- W2938315078 cites W2505859840 @default.
- W2938315078 cites W2615066822 @default.
- W2938315078 cites W2798860475 @default.
- W2938315078 cites W2799398590 @default.
- W2938315078 cites W2954386920 @default.
- W2938315078 cites W2963693343 @default.
- W2938315078 cites W3139950380 @default.
- W2938315078 cites W3207410279 @default.
- W2938315078 cites W39337161 @default.
- W2938315078 cites W427823670 @default.
- W2938315078 cites W561202933 @default.
- W2938315078 cites W568537268 @default.
- W2938315078 cites W656139344 @default.
- W2938315078 doi "https://doi.org/10.48550/arxiv.1808.09783" @default.
- W2938315078 hasPublicationYear "2018" @default.
- W2938315078 type Work @default.
- W2938315078 sameAs 2938315078 @default.
- W2938315078 citedByCount "0" @default.
- W2938315078 crossrefType "posted-content" @default.
- W2938315078 hasAuthorship W2938315078A5007539743 @default.
- W2938315078 hasAuthorship W2938315078A5073669576 @default.
- W2938315078 hasBestOaLocation W29383150781 @default.
- W2938315078 hasConcept C110729354 @default.
- W2938315078 hasConcept C111142201 @default.
- W2938315078 hasConcept C118615104 @default.
- W2938315078 hasConcept C127753061 @default.
- W2938315078 hasConcept C134306372 @default.
- W2938315078 hasConcept C142399903 @default.
- W2938315078 hasConcept C152062344 @default.
- W2938315078 hasConcept C153046414 @default.
- W2938315078 hasConcept C167729594 @default.
- W2938315078 hasConcept C171636804 @default.
- W2938315078 hasConcept C177264268 @default.
- W2938315078 hasConcept C18648836 @default.
- W2938315078 hasConcept C18903297 @default.
- W2938315078 hasConcept C194886279 @default.
- W2938315078 hasConcept C199360897 @default.
- W2938315078 hasConcept C202444582 @default.
- W2938315078 hasConcept C2524010 @default.
- W2938315078 hasConcept C2777759810 @default.
- W2938315078 hasConcept C33923547 @default.
- W2938315078 hasConcept C34388435 @default.
- W2938315078 hasConcept C41008148 @default.
- W2938315078 hasConcept C45962547 @default.
- W2938315078 hasConcept C46757340 @default.
- W2938315078 hasConcept C86803240 @default.
- W2938315078 hasConceptScore W2938315078C110729354 @default.
- W2938315078 hasConceptScore W2938315078C111142201 @default.
- W2938315078 hasConceptScore W2938315078C118615104 @default.
- W2938315078 hasConceptScore W2938315078C127753061 @default.
- W2938315078 hasConceptScore W2938315078C134306372 @default.
- W2938315078 hasConceptScore W2938315078C142399903 @default.
- W2938315078 hasConceptScore W2938315078C152062344 @default.
- W2938315078 hasConceptScore W2938315078C153046414 @default.
- W2938315078 hasConceptScore W2938315078C167729594 @default.
- W2938315078 hasConceptScore W2938315078C171636804 @default.
- W2938315078 hasConceptScore W2938315078C177264268 @default.
- W2938315078 hasConceptScore W2938315078C18648836 @default.