Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938341552> ?p ?o ?g. }
- W2938341552 abstract "We formulate a generalization of Higgs effective field theory (HEFT) including an arbitrary number of extra neutral and charged Higgs bosons---a generalized HEFT (GHEFT)---to describe nonminimal electroweak symmetry breaking models. Using the geometrical form of the GHEFT Lagrangian, which can be regarded as a nonlinear sigma model on a scalar manifold, it is shown that the scalar boson scattering amplitudes are described in terms of the Riemann curvature tensor (geometry) of the scalar manifold and the covariant derivatives of the potential. The coefficients of the one-loop divergent terms in the oblique correction parameters $S$ and $U$ can also be written in terms of the Killing vectors (symmetry) and the Riemann curvature tensor (geometry). It is found that the perturbative unitarity of the scattering amplitudes involving the Higgs bosons and the longitudinal gauge bosons demands that the scalar manifold be flat. The relationship between the finiteness of the electroweak oblique corrections and the perturbative unitarity of the scattering amplitudes is also clarified in this language: we verify that once the tree-level unitarity is ensured, the one-loop finiteness of the oblique correction parameters $S$ and $U$ is automatically guaranteed." @default.
- W2938341552 created "2019-04-25" @default.
- W2938341552 creator A5000138255 @default.
- W2938341552 creator A5010335400 @default.
- W2938341552 creator A5013631013 @default.
- W2938341552 creator A5029092749 @default.
- W2938341552 date "2019-10-18" @default.
- W2938341552 modified "2023-10-17" @default.
- W2938341552 title "Symmetry and geometry in a generalized Higgs effective field theory: Finiteness of oblique corrections versus perturbative unitarity" @default.
- W2938341552 cites W14070410 @default.
- W2938341552 cites W1539738185 @default.
- W2938341552 cites W1617704866 @default.
- W2938341552 cites W1736412730 @default.
- W2938341552 cites W1755558029 @default.
- W2938341552 cites W1846025899 @default.
- W2938341552 cites W1858542512 @default.
- W2938341552 cites W1897002351 @default.
- W2938341552 cites W1900201346 @default.
- W2938341552 cites W1904990467 @default.
- W2938341552 cites W1929210433 @default.
- W2938341552 cites W1963815218 @default.
- W2938341552 cites W1970944781 @default.
- W2938341552 cites W1975211291 @default.
- W2938341552 cites W1975890304 @default.
- W2938341552 cites W1975926878 @default.
- W2938341552 cites W1976357882 @default.
- W2938341552 cites W1978474930 @default.
- W2938341552 cites W1980388514 @default.
- W2938341552 cites W1981921552 @default.
- W2938341552 cites W1982838651 @default.
- W2938341552 cites W1985940120 @default.
- W2938341552 cites W1986513280 @default.
- W2938341552 cites W1987146684 @default.
- W2938341552 cites W1989092082 @default.
- W2938341552 cites W1989692519 @default.
- W2938341552 cites W1990203542 @default.
- W2938341552 cites W1992152712 @default.
- W2938341552 cites W1993681677 @default.
- W2938341552 cites W1996928606 @default.
- W2938341552 cites W1998089507 @default.
- W2938341552 cites W1998455786 @default.
- W2938341552 cites W2000148922 @default.
- W2938341552 cites W2001509010 @default.
- W2938341552 cites W2004756605 @default.
- W2938341552 cites W2005934488 @default.
- W2938341552 cites W2009407387 @default.
- W2938341552 cites W2010289750 @default.
- W2938341552 cites W2012555773 @default.
- W2938341552 cites W2013436005 @default.
- W2938341552 cites W2016069374 @default.
- W2938341552 cites W2016196853 @default.
- W2938341552 cites W2016631558 @default.
- W2938341552 cites W2017658873 @default.
- W2938341552 cites W2018548893 @default.
- W2938341552 cites W2021292280 @default.
- W2938341552 cites W2022423725 @default.
- W2938341552 cites W2022778241 @default.
- W2938341552 cites W2023309614 @default.
- W2938341552 cites W2023657792 @default.
- W2938341552 cites W2025027141 @default.
- W2938341552 cites W2026381522 @default.
- W2938341552 cites W2042953087 @default.
- W2938341552 cites W2046765428 @default.
- W2938341552 cites W2047030341 @default.
- W2938341552 cites W2050512177 @default.
- W2938341552 cites W2054843458 @default.
- W2938341552 cites W2055360787 @default.
- W2938341552 cites W2057581299 @default.
- W2938341552 cites W2061128950 @default.
- W2938341552 cites W2065510778 @default.
- W2938341552 cites W2070917887 @default.
- W2938341552 cites W207142629 @default.
- W2938341552 cites W2071591809 @default.
- W2938341552 cites W2072190128 @default.
- W2938341552 cites W2073826663 @default.
- W2938341552 cites W2075156513 @default.
- W2938341552 cites W2079542264 @default.
- W2938341552 cites W2080500755 @default.
- W2938341552 cites W2082355998 @default.
- W2938341552 cites W2088080025 @default.
- W2938341552 cites W2098604392 @default.
- W2938341552 cites W2101946481 @default.
- W2938341552 cites W2102948418 @default.
- W2938341552 cites W2103243583 @default.
- W2938341552 cites W2103281218 @default.
- W2938341552 cites W2103734246 @default.
- W2938341552 cites W2108896677 @default.
- W2938341552 cites W2109665699 @default.
- W2938341552 cites W2110365263 @default.
- W2938341552 cites W2114210704 @default.
- W2938341552 cites W2114849243 @default.
- W2938341552 cites W2115062354 @default.
- W2938341552 cites W2122128227 @default.
- W2938341552 cites W2122360507 @default.
- W2938341552 cites W2124075924 @default.
- W2938341552 cites W2133336555 @default.
- W2938341552 cites W2135978187 @default.
- W2938341552 cites W2137173946 @default.
- W2938341552 cites W2137284081 @default.
- W2938341552 cites W2147224724 @default.