Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938344512> ?p ?o ?g. }
- W2938344512 abstract "Insolvency prediction is one of the crucial abilities in corporate finance and financial management. It is critical in accounts receivable management, capital budgeting decisions, financial analysis, capital structure management, going concern assessment and co-operation with other companies. The purpose of this paper is to compare the efficiency of selected deep learning and machine learning algorithms trained on a representative sample of Polish companies for the period 2008–2017. In particular, the paper tested the following popular machine learning algorithms: discriminant analysis (DA), logit (L), support vector machines (SVM), random forest (RF), gradient boosting decision trees (GB), neural network with one hidden layer (NN), convolutional neural network (CNN), and naive Bayes (NB). The research hypotheses evaluated in the paper state that if one has access to a large sample of companies, the most accurate algorithm (first choice) in bankruptcy prediction will be gradient boosting decision trees (H1), random forest (H2) and neural networks (H3) (deep learning) algorithms. The initial hypotheses were formulated based on the practitioners’ opinions regarding the usefulness of various machine learning and artificial intelligence algorithms in bankruptcy prediction. As the results of the research suggest, both deep learning and machine learning algorithms proved to have very comparable efficiency. The new factor introduced in the paper was that the training of the models was carried out on a representative sample of companies (for years 2008–2013) and also the testing phase used a significant number of bankrupt and active companies (validation included a completely different set of companies than those used in the training phase: data were taken from a different time period, 2014–2017, and companies in both sets were also completely different)." @default.
- W2938344512 created "2019-04-25" @default.
- W2938344512 creator A5040108486 @default.
- W2938344512 date "2018-01-01" @default.
- W2938344512 modified "2023-10-03" @default.
- W2938344512 title "Predicting Bankruptcy at Polish Companies: A Comparison of Selected Machine Learning and Deep Learning Algorithms" @default.
- W2938344512 cites W135247957 @default.
- W2938344512 cites W1513074283 @default.
- W2938344512 cites W1538210498 @default.
- W2938344512 cites W1857667039 @default.
- W2938344512 cites W1966873979 @default.
- W2938344512 cites W1972805005 @default.
- W2938344512 cites W1987970207 @default.
- W2938344512 cites W1997653576 @default.
- W2938344512 cites W2000209534 @default.
- W2938344512 cites W2001121290 @default.
- W2938344512 cites W2004473119 @default.
- W2938344512 cites W2009620879 @default.
- W2938344512 cites W2011108441 @default.
- W2938344512 cites W2029864452 @default.
- W2938344512 cites W2030499221 @default.
- W2938344512 cites W2064528384 @default.
- W2938344512 cites W2065052734 @default.
- W2938344512 cites W2068282352 @default.
- W2938344512 cites W2069762301 @default.
- W2938344512 cites W2077791120 @default.
- W2938344512 cites W2079402140 @default.
- W2938344512 cites W2094498086 @default.
- W2938344512 cites W2109682890 @default.
- W2938344512 cites W2121069620 @default.
- W2938344512 cites W2128205874 @default.
- W2938344512 cites W2130508343 @default.
- W2938344512 cites W2164304345 @default.
- W2938344512 cites W2305449823 @default.
- W2938344512 cites W2327706228 @default.
- W2938344512 cites W2410701662 @default.
- W2938344512 cites W2549839096 @default.
- W2938344512 cites W2606916050 @default.
- W2938344512 cites W2618249137 @default.
- W2938344512 cites W2619823924 @default.
- W2938344512 cites W2725772539 @default.
- W2938344512 cites W2889397843 @default.
- W2938344512 cites W2942758760 @default.
- W2938344512 cites W2992559470 @default.
- W2938344512 cites W624126003 @default.
- W2938344512 cites W756293423 @default.
- W2938344512 doi "https://doi.org/10.15678/znuek.2018.0978.0603" @default.
- W2938344512 hasPublicationYear "2018" @default.
- W2938344512 type Work @default.
- W2938344512 sameAs 2938344512 @default.
- W2938344512 citedByCount "2" @default.
- W2938344512 countsByYear W29383445122020 @default.
- W2938344512 countsByYear W29383445122021 @default.
- W2938344512 crossrefType "journal-article" @default.
- W2938344512 hasAuthorship W2938344512A5040108486 @default.
- W2938344512 hasBestOaLocation W29383445121 @default.
- W2938344512 hasConcept C10138342 @default.
- W2938344512 hasConcept C108583219 @default.
- W2938344512 hasConcept C11413529 @default.
- W2938344512 hasConcept C119857082 @default.
- W2938344512 hasConcept C12267149 @default.
- W2938344512 hasConcept C154945302 @default.
- W2938344512 hasConcept C162324750 @default.
- W2938344512 hasConcept C169258074 @default.
- W2938344512 hasConcept C185592680 @default.
- W2938344512 hasConcept C198531522 @default.
- W2938344512 hasConcept C41008148 @default.
- W2938344512 hasConcept C43617362 @default.
- W2938344512 hasConcept C46686674 @default.
- W2938344512 hasConcept C504631918 @default.
- W2938344512 hasConcept C50644808 @default.
- W2938344512 hasConcept C52001869 @default.
- W2938344512 hasConcept C70153297 @default.
- W2938344512 hasConcept C81363708 @default.
- W2938344512 hasConcept C84525736 @default.
- W2938344512 hasConceptScore W2938344512C10138342 @default.
- W2938344512 hasConceptScore W2938344512C108583219 @default.
- W2938344512 hasConceptScore W2938344512C11413529 @default.
- W2938344512 hasConceptScore W2938344512C119857082 @default.
- W2938344512 hasConceptScore W2938344512C12267149 @default.
- W2938344512 hasConceptScore W2938344512C154945302 @default.
- W2938344512 hasConceptScore W2938344512C162324750 @default.
- W2938344512 hasConceptScore W2938344512C169258074 @default.
- W2938344512 hasConceptScore W2938344512C185592680 @default.
- W2938344512 hasConceptScore W2938344512C198531522 @default.
- W2938344512 hasConceptScore W2938344512C41008148 @default.
- W2938344512 hasConceptScore W2938344512C43617362 @default.
- W2938344512 hasConceptScore W2938344512C46686674 @default.
- W2938344512 hasConceptScore W2938344512C504631918 @default.
- W2938344512 hasConceptScore W2938344512C50644808 @default.
- W2938344512 hasConceptScore W2938344512C52001869 @default.
- W2938344512 hasConceptScore W2938344512C70153297 @default.
- W2938344512 hasConceptScore W2938344512C81363708 @default.
- W2938344512 hasConceptScore W2938344512C84525736 @default.
- W2938344512 hasLocation W29383445121 @default.
- W2938344512 hasOpenAccess W2938344512 @default.
- W2938344512 hasPrimaryLocation W29383445121 @default.
- W2938344512 hasRelatedWork W2026316875 @default.
- W2938344512 hasRelatedWork W2149876981 @default.
- W2938344512 hasRelatedWork W2154945267 @default.