Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938364584> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2938364584 abstract "In a fermentation process, dissolved oxygen (DO) concentration is mostly affected by aeration rate, and agitation speed and temperature. Thus it is beneficial to model the relationship of DO concentration with these variables based on real process data for further use in controller design. Formulation of bioprocess model using process data or data driven technique is able to describe the true process conditions better than a model driven technique that focused on ideal steady state condition of process map the relationship of DO concentration with other physical and chemical process variable that has influence on the process. Artificial neural network (ANN) is a reliable and popular tool for approximation of nonlinear relationship between input and output data with little knowledge and no assumption of the process, also when dealing with problems involving prediction of variables. The structure of a neural network model namely input layer, hidden layer and output layers has significant effect on predicted results. While the number of neurons in input and output layers are determined based on the number of respective input and output parameters, there is no straightforward method to determine the optimal number of neurons in hidden layer. In order to select the appropriate structure, trial and error method or repeated runs are usually used to find the number of hidden neurons that gives smallest value of error and highest value of correlation coefficient. In this paper, a ranking system based on repeated runs of neural network model is used to determine the architecture with optimal number of hidden neurons for three different division of data for training and testing. The ranks are applied together for both training and testing datasets. The backpropagation neural network model with Lavenberg Marquardt learning algorithm was developed using 1476 samples real process dataset obtained from a fermentation process in a 200L bioreactor. The ranking system applied to simulation results shows that the best prediction of dissolved oxygen level was obtained for 80%/20% data division with 6 hidden neurons." @default.
- W2938364584 created "2019-04-25" @default.
- W2938364584 creator A5020124833 @default.
- W2938364584 creator A5039669738 @default.
- W2938364584 creator A5044476504 @default.
- W2938364584 creator A5057981369 @default.
- W2938364584 creator A5073272472 @default.
- W2938364584 creator A5073904878 @default.
- W2938364584 creator A5087264309 @default.
- W2938364584 date "2017-01-01" @default.
- W2938364584 modified "2023-09-23" @default.
- W2938364584 title "Rank-based optimal neural network architecture for dissolved oxygen prediction in a 200L bioreactor" @default.
- W2938364584 hasPublicationYear "2017" @default.
- W2938364584 type Work @default.
- W2938364584 sameAs 2938364584 @default.
- W2938364584 citedByCount "0" @default.
- W2938364584 crossrefType "journal-article" @default.
- W2938364584 hasAuthorship W2938364584A5020124833 @default.
- W2938364584 hasAuthorship W2938364584A5039669738 @default.
- W2938364584 hasAuthorship W2938364584A5044476504 @default.
- W2938364584 hasAuthorship W2938364584A5057981369 @default.
- W2938364584 hasAuthorship W2938364584A5073272472 @default.
- W2938364584 hasAuthorship W2938364584A5073904878 @default.
- W2938364584 hasAuthorship W2938364584A5087264309 @default.
- W2938364584 hasConcept C111919701 @default.
- W2938364584 hasConcept C119857082 @default.
- W2938364584 hasConcept C121332964 @default.
- W2938364584 hasConcept C127413603 @default.
- W2938364584 hasConcept C154945302 @default.
- W2938364584 hasConcept C158622935 @default.
- W2938364584 hasConcept C186060115 @default.
- W2938364584 hasConcept C189430467 @default.
- W2938364584 hasConcept C2775924081 @default.
- W2938364584 hasConcept C2780092901 @default.
- W2938364584 hasConcept C33923547 @default.
- W2938364584 hasConcept C41008148 @default.
- W2938364584 hasConcept C42360764 @default.
- W2938364584 hasConcept C47446073 @default.
- W2938364584 hasConcept C4916135 @default.
- W2938364584 hasConcept C50644808 @default.
- W2938364584 hasConcept C62520636 @default.
- W2938364584 hasConcept C86803240 @default.
- W2938364584 hasConcept C98045186 @default.
- W2938364584 hasConceptScore W2938364584C111919701 @default.
- W2938364584 hasConceptScore W2938364584C119857082 @default.
- W2938364584 hasConceptScore W2938364584C121332964 @default.
- W2938364584 hasConceptScore W2938364584C127413603 @default.
- W2938364584 hasConceptScore W2938364584C154945302 @default.
- W2938364584 hasConceptScore W2938364584C158622935 @default.
- W2938364584 hasConceptScore W2938364584C186060115 @default.
- W2938364584 hasConceptScore W2938364584C189430467 @default.
- W2938364584 hasConceptScore W2938364584C2775924081 @default.
- W2938364584 hasConceptScore W2938364584C2780092901 @default.
- W2938364584 hasConceptScore W2938364584C33923547 @default.
- W2938364584 hasConceptScore W2938364584C41008148 @default.
- W2938364584 hasConceptScore W2938364584C42360764 @default.
- W2938364584 hasConceptScore W2938364584C47446073 @default.
- W2938364584 hasConceptScore W2938364584C4916135 @default.
- W2938364584 hasConceptScore W2938364584C50644808 @default.
- W2938364584 hasConceptScore W2938364584C62520636 @default.
- W2938364584 hasConceptScore W2938364584C86803240 @default.
- W2938364584 hasConceptScore W2938364584C98045186 @default.
- W2938364584 hasLocation W29383645841 @default.
- W2938364584 hasOpenAccess W2938364584 @default.
- W2938364584 hasPrimaryLocation W29383645841 @default.
- W2938364584 hasRelatedWork W1551854751 @default.
- W2938364584 hasRelatedWork W1986793386 @default.
- W2938364584 hasRelatedWork W2012414637 @default.
- W2938364584 hasRelatedWork W2048092905 @default.
- W2938364584 hasRelatedWork W2365106812 @default.
- W2938364584 hasRelatedWork W2389715317 @default.
- W2938364584 hasRelatedWork W2466844276 @default.
- W2938364584 hasRelatedWork W2520122905 @default.
- W2938364584 hasRelatedWork W2906578102 @default.
- W2938364584 hasRelatedWork W2997580576 @default.
- W2938364584 hasRelatedWork W3007835761 @default.
- W2938364584 hasRelatedWork W3142265327 @default.
- W2938364584 hasRelatedWork W3171559016 @default.
- W2938364584 hasRelatedWork W603616119 @default.
- W2938364584 hasRelatedWork W805616192 @default.
- W2938364584 hasRelatedWork W2619456804 @default.
- W2938364584 hasRelatedWork W2831833733 @default.
- W2938364584 hasRelatedWork W2854852378 @default.
- W2938364584 hasRelatedWork W2875986676 @default.
- W2938364584 hasRelatedWork W2960862969 @default.
- W2938364584 isParatext "false" @default.
- W2938364584 isRetracted "false" @default.
- W2938364584 magId "2938364584" @default.
- W2938364584 workType "article" @default.