Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938390807> ?p ?o ?g. }
- W2938390807 abstract "Most of the classical denoising methods restore clear results by selecting and averaging pixels in the noisy input. Instead of relying on hand-crafted selecting and averaging strategies, we propose to explicitly learn this process with deep neural networks. Specifically, we propose deformable 2D kernels for image denoising where the sampling locations and kernel weights are both learned. The proposed kernel naturally adapts to image structures and could effectively reduce the oversmoothing artifacts. Furthermore, we develop 3D deformable kernels for video denoising to more efficiently sample pixels across the spatial-temporal space. Our method is able to solve the misalignment issues of large motion from dynamic scenes. For better training our video denoising model, we introduce the trilinear sampler and a new regularization term. We demonstrate that the proposed method performs favorably against the state-of-the-art image and video denoising approaches on both synthetic and real-world data." @default.
- W2938390807 created "2019-04-25" @default.
- W2938390807 creator A5013109703 @default.
- W2938390807 creator A5053022617 @default.
- W2938390807 creator A5063591165 @default.
- W2938390807 date "2019-04-15" @default.
- W2938390807 modified "2023-10-17" @default.
- W2938390807 title "Learning Deformable Kernels for Image and Video Denoising" @default.
- W2938390807 cites W1512782336 @default.
- W2938390807 cites W1665214252 @default.
- W2938390807 cites W1901129140 @default.
- W2938390807 cites W1915485278 @default.
- W2938390807 cites W1965221572 @default.
- W2938390807 cites W2047422346 @default.
- W2938390807 cites W2056370875 @default.
- W2938390807 cites W2097073572 @default.
- W2938390807 cites W2099244020 @default.
- W2938390807 cites W2119449517 @default.
- W2938390807 cites W2137577808 @default.
- W2938390807 cites W2163446914 @default.
- W2938390807 cites W2414711238 @default.
- W2938390807 cites W2508457857 @default.
- W2938390807 cites W2527006979 @default.
- W2938390807 cites W2558246008 @default.
- W2938390807 cites W2604329646 @default.
- W2938390807 cites W2751736113 @default.
- W2938390807 cites W2774688599 @default.
- W2938390807 cites W2799265886 @default.
- W2938390807 cites W2894627214 @default.
- W2938390807 cites W2895361760 @default.
- W2938390807 cites W2901996700 @default.
- W2938390807 cites W2950477723 @default.
- W2938390807 cites W2962767526 @default.
- W2938390807 cites W2963093735 @default.
- W2938390807 cites W2963200935 @default.
- W2938390807 cites W2964121744 @default.
- W2938390807 cites W35410341 @default.
- W2938390807 cites W603908379 @default.
- W2938390807 doi "https://doi.org/10.48550/arxiv.1904.06903" @default.
- W2938390807 hasPublicationYear "2019" @default.
- W2938390807 type Work @default.
- W2938390807 sameAs 2938390807 @default.
- W2938390807 citedByCount "12" @default.
- W2938390807 countsByYear W29383908072019 @default.
- W2938390807 countsByYear W29383908072020 @default.
- W2938390807 countsByYear W29383908072021 @default.
- W2938390807 crossrefType "posted-content" @default.
- W2938390807 hasAuthorship W2938390807A5013109703 @default.
- W2938390807 hasAuthorship W2938390807A5053022617 @default.
- W2938390807 hasAuthorship W2938390807A5063591165 @default.
- W2938390807 hasBestOaLocation W29383908071 @default.
- W2938390807 hasConcept C101453961 @default.
- W2938390807 hasConcept C114614502 @default.
- W2938390807 hasConcept C115961682 @default.
- W2938390807 hasConcept C153180895 @default.
- W2938390807 hasConcept C154945302 @default.
- W2938390807 hasConcept C160633673 @default.
- W2938390807 hasConcept C163294075 @default.
- W2938390807 hasConcept C202474056 @default.
- W2938390807 hasConcept C207282899 @default.
- W2938390807 hasConcept C23431618 @default.
- W2938390807 hasConcept C2776135515 @default.
- W2938390807 hasConcept C2983327147 @default.
- W2938390807 hasConcept C30814859 @default.
- W2938390807 hasConcept C31972630 @default.
- W2938390807 hasConcept C33923547 @default.
- W2938390807 hasConcept C41008148 @default.
- W2938390807 hasConcept C65483669 @default.
- W2938390807 hasConcept C74193536 @default.
- W2938390807 hasConcept C99498987 @default.
- W2938390807 hasConceptScore W2938390807C101453961 @default.
- W2938390807 hasConceptScore W2938390807C114614502 @default.
- W2938390807 hasConceptScore W2938390807C115961682 @default.
- W2938390807 hasConceptScore W2938390807C153180895 @default.
- W2938390807 hasConceptScore W2938390807C154945302 @default.
- W2938390807 hasConceptScore W2938390807C160633673 @default.
- W2938390807 hasConceptScore W2938390807C163294075 @default.
- W2938390807 hasConceptScore W2938390807C202474056 @default.
- W2938390807 hasConceptScore W2938390807C207282899 @default.
- W2938390807 hasConceptScore W2938390807C23431618 @default.
- W2938390807 hasConceptScore W2938390807C2776135515 @default.
- W2938390807 hasConceptScore W2938390807C2983327147 @default.
- W2938390807 hasConceptScore W2938390807C30814859 @default.
- W2938390807 hasConceptScore W2938390807C31972630 @default.
- W2938390807 hasConceptScore W2938390807C33923547 @default.
- W2938390807 hasConceptScore W2938390807C41008148 @default.
- W2938390807 hasConceptScore W2938390807C65483669 @default.
- W2938390807 hasConceptScore W2938390807C74193536 @default.
- W2938390807 hasConceptScore W2938390807C99498987 @default.
- W2938390807 hasLocation W29383908071 @default.
- W2938390807 hasOpenAccess W2938390807 @default.
- W2938390807 hasPrimaryLocation W29383908071 @default.
- W2938390807 hasRelatedWork W1495521283 @default.
- W2938390807 hasRelatedWork W1965264711 @default.
- W2938390807 hasRelatedWork W2142544860 @default.
- W2938390807 hasRelatedWork W2511186555 @default.
- W2938390807 hasRelatedWork W2612397051 @default.
- W2938390807 hasRelatedWork W3033981387 @default.
- W2938390807 hasRelatedWork W3034863454 @default.
- W2938390807 hasRelatedWork W3049417898 @default.