Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938406589> ?p ?o ?g. }
- W2938406589 endingPage "253" @default.
- W2938406589 startingPage "246" @default.
- W2938406589 abstract "Abstract The project aim was to estimate N uptake (Nup), dry matter yield (DMY) and crude protein concentration (CP) of forage crops both during typical harvest times and at a very early developmental stage. Canopy spectral reflectance of legume and grass mixtures was measured in Sweden using a commercialized radiometer (400–1000 nm range). In total, 377 plant samples were tested in-situ in different grass and legume mixtures (6 grass species and 2 clover species) across two years, two locations and five N rates. Two mathematical methods, namely partial least squares (PLS) and support vector machine (SVM) were used to build prediction models between Nup, DMY and CP, and canopy spectral reflectance. Of the total 377 samples, 251 were randomly selected and used for calibration, and the remaining 126 samples were used as an independent dataset for validation. Results showed that the performance of SVM was better than PLS (based on mean absolute error (MAE) for both calibration and validation datasets) for the estimation of all investigated variables. Results for the validation set showed that the MAEs of PLS and SVM for Nup estimation were 17 and 9.2 kg/ha, respectively. The MAEs of PLS and SVM for DMY estimation were 587 and 283 kg/ha, respectively. The MAEs of PLS and SVM for CP estimation were 2.8 and 1.8%, respectively. In addition, a subsample, which corresponded to an early developmental stage, was analysed separately with PLS and SVM as for the whole dataset. Results showed that SVM was better than PLS for the estimation of all investigated variables. The high performance of SVM to estimate legume and grass mixture N uptake and dry matter yield could provide support for varying management decisions including fertilization and timing of harvest." @default.
- W2938406589 created "2019-04-25" @default.
- W2938406589 creator A5020000057 @default.
- W2938406589 creator A5020832588 @default.
- W2938406589 creator A5021028964 @default.
- W2938406589 creator A5026824407 @default.
- W2938406589 creator A5061615199 @default.
- W2938406589 date "2019-07-01" @default.
- W2938406589 modified "2023-10-03" @default.
- W2938406589 title "Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data" @default.
- W2938406589 cites W1703267963 @default.
- W2938406589 cites W1965278281 @default.
- W2938406589 cites W1986930621 @default.
- W2938406589 cites W1988233512 @default.
- W2938406589 cites W1999373227 @default.
- W2938406589 cites W2001323604 @default.
- W2938406589 cites W2004598447 @default.
- W2938406589 cites W2004785362 @default.
- W2938406589 cites W2015490027 @default.
- W2938406589 cites W2016671489 @default.
- W2938406589 cites W2019919981 @default.
- W2938406589 cites W2023788490 @default.
- W2938406589 cites W2025751541 @default.
- W2938406589 cites W2028294158 @default.
- W2938406589 cites W2036031188 @default.
- W2938406589 cites W2042358730 @default.
- W2938406589 cites W2052256290 @default.
- W2938406589 cites W2065191898 @default.
- W2938406589 cites W2069914810 @default.
- W2938406589 cites W2070564279 @default.
- W2938406589 cites W2073503722 @default.
- W2938406589 cites W2074349517 @default.
- W2938406589 cites W2102794349 @default.
- W2938406589 cites W2111947859 @default.
- W2938406589 cites W2127049470 @default.
- W2938406589 cites W2142827986 @default.
- W2938406589 cites W2144559754 @default.
- W2938406589 cites W2149081460 @default.
- W2938406589 cites W2150202143 @default.
- W2938406589 cites W2151896708 @default.
- W2938406589 cites W2158994553 @default.
- W2938406589 cites W2169492153 @default.
- W2938406589 cites W2473674430 @default.
- W2938406589 cites W2536008880 @default.
- W2938406589 cites W2612907974 @default.
- W2938406589 cites W2624387057 @default.
- W2938406589 cites W2743449486 @default.
- W2938406589 cites W2748099705 @default.
- W2938406589 cites W38117118 @default.
- W2938406589 cites W4243139600 @default.
- W2938406589 cites W2005500014 @default.
- W2938406589 doi "https://doi.org/10.1016/j.compag.2019.03.038" @default.
- W2938406589 hasPublicationYear "2019" @default.
- W2938406589 type Work @default.
- W2938406589 sameAs 2938406589 @default.
- W2938406589 citedByCount "32" @default.
- W2938406589 countsByYear W29384065892020 @default.
- W2938406589 countsByYear W29384065892021 @default.
- W2938406589 countsByYear W29384065892022 @default.
- W2938406589 countsByYear W29384065892023 @default.
- W2938406589 crossrefType "journal-article" @default.
- W2938406589 hasAuthorship W2938406589A5020000057 @default.
- W2938406589 hasAuthorship W2938406589A5020832588 @default.
- W2938406589 hasAuthorship W2938406589A5021028964 @default.
- W2938406589 hasAuthorship W2938406589A5026824407 @default.
- W2938406589 hasAuthorship W2938406589A5061615199 @default.
- W2938406589 hasBestOaLocation W29384065892 @default.
- W2938406589 hasConcept C105795698 @default.
- W2938406589 hasConcept C111472728 @default.
- W2938406589 hasConcept C121332964 @default.
- W2938406589 hasConcept C12267149 @default.
- W2938406589 hasConcept C127413603 @default.
- W2938406589 hasConcept C134121241 @default.
- W2938406589 hasConcept C138885662 @default.
- W2938406589 hasConcept C145828037 @default.
- W2938406589 hasConcept C153180895 @default.
- W2938406589 hasConcept C154945302 @default.
- W2938406589 hasConcept C185429906 @default.
- W2938406589 hasConcept C191897082 @default.
- W2938406589 hasConcept C192562407 @default.
- W2938406589 hasConcept C201995342 @default.
- W2938406589 hasConcept C22354355 @default.
- W2938406589 hasConcept C2776632002 @default.
- W2938406589 hasConcept C2779530757 @default.
- W2938406589 hasConcept C2983668108 @default.
- W2938406589 hasConcept C32891209 @default.
- W2938406589 hasConcept C33923547 @default.
- W2938406589 hasConcept C41008148 @default.
- W2938406589 hasConcept C62520636 @default.
- W2938406589 hasConcept C6557445 @default.
- W2938406589 hasConcept C86803240 @default.
- W2938406589 hasConcept C96250715 @default.
- W2938406589 hasConcept C9936470 @default.
- W2938406589 hasConceptScore W2938406589C105795698 @default.
- W2938406589 hasConceptScore W2938406589C111472728 @default.
- W2938406589 hasConceptScore W2938406589C121332964 @default.
- W2938406589 hasConceptScore W2938406589C12267149 @default.
- W2938406589 hasConceptScore W2938406589C127413603 @default.