Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938440079> ?p ?o ?g. }
- W2938440079 endingPage "155" @default.
- W2938440079 startingPage "143" @default.
- W2938440079 abstract "Leakage detectability is a key consideration in evaluating the effectiveness of a measurement, monitoring and verification (MMV) plan for a geologic carbon storage (GCS) project. While studies have shown that surface-based, geophysical monitoring methods may be sensitive enough to detect CO2 leakage, these methods are an indirect indicator of leakage. A drawback to relying on direct geochemical monitoring is that by the time a significant leak is confirmed, it may be too late to mitigate or remediate the environmental impacts. In this study, we combine information from geophysical and geochemical monitoring methods to provide an integrated diagnosis of leakage events. The detectability for various monitoring parameters (pH, TDS, alkalinity, Ca, Cl, Na, and pressure) collected from monitoring wells are evaluated by leakage detection probability, using simulated wellbore-leakage/plume-migration events and monitoring scenarios for a hypothetical GCS operation at the Kimberlina site in California, USA. The NUFT code is used to model these events, by coupling wellbore-leakage simulations to 3-dimensional reactive, multi-phase, flow and transport simulations of brine and CO2 leakage-plume migration in aquifers overlying the GCS reservoir. Wellbore leakage in legacy wells located 1.4, 3.4 and 6.8 km from the CO2 injector is evaluated for a range of (1) wellbore bottom-hole pressure and CO2 saturation determined by GCS simulations, (2) regional groundwater gradient in the aquifers, and (3) wellbore permeability. Simulated leakage-induced changes in seven monitoring parameters at different depths are used to calculate the corresponding detection probabilities, based on the background distribution data and selected monitoring-technology detection thresholds. The responses for these monitoring parameters are tested and combined to enhance the overall detectability. The results indicate the leakage signals are more easily detected at shallower depths where buoyant CO2 has migrated and flashed from supercritical to gas phase, causing a large increase in CO2 volume. While the results suggest pH monitoring is more responsive to the simulated leakage events than TDS monitoring at shallower depths, TDS changes may be more readily observed at greater depths. The addition of carbonate alkalinity can confirm CO2 leakage detection and help distinguish CO2 leakage from other contamination sources. Direct pressure change measurements are very sensitive to leakage, but the rapid and broad propagation of the pressure response hinders using such measurements to easily locate the origin of leakage. Combining measurements could greatly improve the confidence of leakage diagnosis. High bottom-hole CO2 saturation, such as that for a leaky well close to the injector (˜1.4 km), high regional groundwater gradient, and high wellbore permeabilities all increase the leakage plume size, and thus the leakage detectability. Our analysis suggests pressure monitoring is a valuable indicator of leakage events at early stages, while pH, TDS and carbonate alkalinity monitoring can directly diagnose leakage impacts by providing more detailed information in the groundwater receptor. Finally, an example Bayesian belief network model is presented for evaluating the effect of risk reduction options in terms of joint monitoring detection probability using the associated simulation scenarios. This framework is demonstrated to inform how pressure and groundwater quality information can be integrated into site MMV and risk management plans." @default.
- W2938440079 created "2019-04-25" @default.
- W2938440079 creator A5004830441 @default.
- W2938440079 creator A5021671149 @default.
- W2938440079 creator A5048094122 @default.
- W2938440079 creator A5080330902 @default.
- W2938440079 creator A5085869443 @default.
- W2938440079 date "2019-06-01" @default.
- W2938440079 modified "2023-10-10" @default.
- W2938440079 title "Integration of wellbore pressure measurement and groundwater quality monitoring to enhance detectability of brine and CO2 leakage" @default.
- W2938440079 cites W1584515172 @default.
- W2938440079 cites W1976102130 @default.
- W2938440079 cites W1978759895 @default.
- W2938440079 cites W1980509529 @default.
- W2938440079 cites W1985045569 @default.
- W2938440079 cites W1986714070 @default.
- W2938440079 cites W1996385540 @default.
- W2938440079 cites W1998858774 @default.
- W2938440079 cites W2005564062 @default.
- W2938440079 cites W2019136199 @default.
- W2938440079 cites W2026960979 @default.
- W2938440079 cites W2032308416 @default.
- W2938440079 cites W2055191938 @default.
- W2938440079 cites W2058738180 @default.
- W2938440079 cites W2072189389 @default.
- W2938440079 cites W2072736833 @default.
- W2938440079 cites W2073532908 @default.
- W2938440079 cites W2084322502 @default.
- W2938440079 cites W2094429799 @default.
- W2938440079 cites W2095513387 @default.
- W2938440079 cites W2105762082 @default.
- W2938440079 cites W2119852967 @default.
- W2938440079 cites W2121826742 @default.
- W2938440079 cites W2135305615 @default.
- W2938440079 cites W2136446651 @default.
- W2938440079 cites W2288815924 @default.
- W2938440079 cites W2303715525 @default.
- W2938440079 cites W2313771942 @default.
- W2938440079 cites W2357569396 @default.
- W2938440079 cites W2419289347 @default.
- W2938440079 cites W2436920746 @default.
- W2938440079 cites W2478808278 @default.
- W2938440079 cites W2550023897 @default.
- W2938440079 cites W2605245962 @default.
- W2938440079 cites W2748545625 @default.
- W2938440079 cites W2750333015 @default.
- W2938440079 cites W2750523988 @default.
- W2938440079 cites W2766718714 @default.
- W2938440079 cites W2831519995 @default.
- W2938440079 cites W2884850704 @default.
- W2938440079 doi "https://doi.org/10.1016/j.ijggc.2019.04.004" @default.
- W2938440079 hasPublicationYear "2019" @default.
- W2938440079 type Work @default.
- W2938440079 sameAs 2938440079 @default.
- W2938440079 citedByCount "9" @default.
- W2938440079 countsByYear W29384400792020 @default.
- W2938440079 countsByYear W29384400792021 @default.
- W2938440079 countsByYear W29384400792022 @default.
- W2938440079 countsByYear W29384400792023 @default.
- W2938440079 crossrefType "journal-article" @default.
- W2938440079 hasAuthorship W2938440079A5004830441 @default.
- W2938440079 hasAuthorship W2938440079A5021671149 @default.
- W2938440079 hasAuthorship W2938440079A5048094122 @default.
- W2938440079 hasAuthorship W2938440079A5080330902 @default.
- W2938440079 hasAuthorship W2938440079A5085869443 @default.
- W2938440079 hasBestOaLocation W29384400791 @default.
- W2938440079 hasConcept C114614502 @default.
- W2938440079 hasConcept C118416809 @default.
- W2938440079 hasConcept C120882062 @default.
- W2938440079 hasConcept C121332964 @default.
- W2938440079 hasConcept C127313418 @default.
- W2938440079 hasConcept C139719470 @default.
- W2938440079 hasConcept C153294291 @default.
- W2938440079 hasConcept C159390177 @default.
- W2938440079 hasConcept C162324750 @default.
- W2938440079 hasConcept C185592680 @default.
- W2938440079 hasConcept C187320778 @default.
- W2938440079 hasConcept C2775840915 @default.
- W2938440079 hasConcept C2777042071 @default.
- W2938440079 hasConcept C33923547 @default.
- W2938440079 hasConcept C39432304 @default.
- W2938440079 hasConcept C41625074 @default.
- W2938440079 hasConcept C55493867 @default.
- W2938440079 hasConcept C75622301 @default.
- W2938440079 hasConcept C76177295 @default.
- W2938440079 hasConcept C78762247 @default.
- W2938440079 hasConcept C9677107 @default.
- W2938440079 hasConcept C9930424 @default.
- W2938440079 hasConceptScore W2938440079C114614502 @default.
- W2938440079 hasConceptScore W2938440079C118416809 @default.
- W2938440079 hasConceptScore W2938440079C120882062 @default.
- W2938440079 hasConceptScore W2938440079C121332964 @default.
- W2938440079 hasConceptScore W2938440079C127313418 @default.
- W2938440079 hasConceptScore W2938440079C139719470 @default.
- W2938440079 hasConceptScore W2938440079C153294291 @default.
- W2938440079 hasConceptScore W2938440079C159390177 @default.
- W2938440079 hasConceptScore W2938440079C162324750 @default.
- W2938440079 hasConceptScore W2938440079C185592680 @default.