Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938471138> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2938471138 endingPage "232" @default.
- W2938471138 startingPage "221" @default.
- W2938471138 abstract "Snowfall negatively affects pavement and visibility conditions, making it one of the major causes of motor vehicle crashes in winter weather. Therefore, providing drivers with real-time roadway weather information during adverse weather is crucial for safe driving. Although road weather stations can provide weather information, these stations are expensive and often do not represent real-time trajectory-level weather information. The main motivation of this study was to develop an affordable in-vehicle snow detection system which can provide trajectory-level weather information in real time. The system utilized SHRP2 Naturalistic Driving Study video data and was based on machine learning techniques. To train the snow detection models, two texture-based image features including gray level co-occurrence matrix (GLCM) and local binary pattern (LBP), and three classification algorithms: support vector machine (SVM), k-nearest neighbor (K-NN), and random forest (RF) were used. The analysis was done on an image dataset consisting of three weather conditions: clear, light snow, and heavy snow. While the highest overall prediction accuracy of the models based on the GLCM features was found to be around 86%, the models considering the LBP based features provided a much higher prediction accuracy of 96%. The snow detection system proposed in this study is cost effective, does not require a lot of technical support, and only needs a single video camera. With the advances in smartphone cameras, simple mobile apps with proper data connectivity can effectively be used to detect roadway weather conditions in real time with reasonable accuracy." @default.
- W2938471138 created "2019-04-25" @default.
- W2938471138 creator A5072928629 @default.
- W2938471138 creator A5079368285 @default.
- W2938471138 date "2019-04-17" @default.
- W2938471138 modified "2023-09-27" @default.
- W2938471138 title "Snow Detection using In-Vehicle Video Camera with Texture-Based Image Features Utilizing K-Nearest Neighbor, Support Vector Machine, and Random Forest" @default.
- W2938471138 cites W1988998406 @default.
- W2938471138 cites W2007768303 @default.
- W2938471138 cites W2044465660 @default.
- W2938471138 cites W2076261376 @default.
- W2938471138 cites W2118020653 @default.
- W2938471138 cites W2119535410 @default.
- W2938471138 cites W2154673940 @default.
- W2938471138 cites W2414795604 @default.
- W2938471138 cites W2593431464 @default.
- W2938471138 cites W2795384528 @default.
- W2938471138 cites W2806322885 @default.
- W2938471138 cites W2943396594 @default.
- W2938471138 doi "https://doi.org/10.1177/0361198119842105" @default.
- W2938471138 hasPublicationYear "2019" @default.
- W2938471138 type Work @default.
- W2938471138 sameAs 2938471138 @default.
- W2938471138 citedByCount "26" @default.
- W2938471138 countsByYear W29384711382019 @default.
- W2938471138 countsByYear W29384711382020 @default.
- W2938471138 countsByYear W29384711382021 @default.
- W2938471138 countsByYear W29384711382022 @default.
- W2938471138 countsByYear W29384711382023 @default.
- W2938471138 crossrefType "journal-article" @default.
- W2938471138 hasAuthorship W2938471138A5072928629 @default.
- W2938471138 hasAuthorship W2938471138A5079368285 @default.
- W2938471138 hasConcept C115961682 @default.
- W2938471138 hasConcept C12267149 @default.
- W2938471138 hasConcept C123403432 @default.
- W2938471138 hasConcept C153294291 @default.
- W2938471138 hasConcept C154945302 @default.
- W2938471138 hasConcept C169258074 @default.
- W2938471138 hasConcept C197046000 @default.
- W2938471138 hasConcept C205649164 @default.
- W2938471138 hasConcept C2781290007 @default.
- W2938471138 hasConcept C31972630 @default.
- W2938471138 hasConcept C41008148 @default.
- W2938471138 hasConcept C53533937 @default.
- W2938471138 hasConcept C62649853 @default.
- W2938471138 hasConcept C87335442 @default.
- W2938471138 hasConceptScore W2938471138C115961682 @default.
- W2938471138 hasConceptScore W2938471138C12267149 @default.
- W2938471138 hasConceptScore W2938471138C123403432 @default.
- W2938471138 hasConceptScore W2938471138C153294291 @default.
- W2938471138 hasConceptScore W2938471138C154945302 @default.
- W2938471138 hasConceptScore W2938471138C169258074 @default.
- W2938471138 hasConceptScore W2938471138C197046000 @default.
- W2938471138 hasConceptScore W2938471138C205649164 @default.
- W2938471138 hasConceptScore W2938471138C2781290007 @default.
- W2938471138 hasConceptScore W2938471138C31972630 @default.
- W2938471138 hasConceptScore W2938471138C41008148 @default.
- W2938471138 hasConceptScore W2938471138C53533937 @default.
- W2938471138 hasConceptScore W2938471138C62649853 @default.
- W2938471138 hasConceptScore W2938471138C87335442 @default.
- W2938471138 hasIssue "8" @default.
- W2938471138 hasLocation W29384711381 @default.
- W2938471138 hasOpenAccess W2938471138 @default.
- W2938471138 hasPrimaryLocation W29384711381 @default.
- W2938471138 hasRelatedWork W2087874231 @default.
- W2938471138 hasRelatedWork W2152274029 @default.
- W2938471138 hasRelatedWork W2275058042 @default.
- W2938471138 hasRelatedWork W2497633036 @default.
- W2938471138 hasRelatedWork W2938471138 @default.
- W2938471138 hasRelatedWork W3217110323 @default.
- W2938471138 hasRelatedWork W4251200457 @default.
- W2938471138 hasRelatedWork W596918715 @default.
- W2938471138 hasRelatedWork W621765167 @default.
- W2938471138 hasRelatedWork W653335624 @default.
- W2938471138 hasVolume "2673" @default.
- W2938471138 isParatext "false" @default.
- W2938471138 isRetracted "false" @default.
- W2938471138 magId "2938471138" @default.
- W2938471138 workType "article" @default.